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Manor, Yair, John Rinzel, Idan Segev, and Yosef Yarom. Low- tions (STOs) of membrane potential in inferior olivary (IO)
amplitude oscillations in the inferior olive: a model based on elec- neurons, observed in slice preparations, underlie this rhythm
trical coupling of neurons with heterogeneous channel densities. (Bloedel and Ebner 1984; Llinás and Sasaki 1989). The
J. Neurophysiol. 77: 2736–2752, 1997. The mechanism underlying STO in an IO neuron acts to rhythmically change its firing
subthreshold oscillations in inferior olivary cells is not known. probability. Consequently, the target cerebellar PurkinjeTo study this question, we developed a single-compartment, two-

cells are activated, with some probability, in particular timevariable, Hodgkin-Huxley-like model for inferior olive neurons.
windows. Not every Purkinje cell will definitely receive ade-The model consists of a leakage current and a low-threshold cal-
quate input to fire on each cycle, however. Thus the rhythmiccium current, whose kinetics were experimentally measured in
activity and its relationship to motor behavior can be re-slices. Depending on the maximal calcium and leak conductances,

we found that a neuron model’s response to current injection could vealed only after the activity is recorded simultaneously from
be of four qualitatively different types: always stable, spontane- a large number of Purkinje neurons (Llinás and Sasaki 1989;
ously oscillating, oscillating with injection of current, and bistable Welsh et al. 1995). Although attempts to characterize this
with injection of current. By the use of phase plane techniques, rhythmicity have been made, they were unsuccessful when
numerical integration, and bifurcation analysis, we subdivided the single units were recorded (Keating and Thach 1995). Intwo-parameter space of channel densities into four regions corre-

addition to their proposed role in generating the cerebellarsponding to these behavioral types. We further developed, with
rhythmic activity, the STOs may also act to synchronize thethe use of such techniques, an empirical rule of thumb that charac-
inputs to the cerebellum under normal conditions (Lamplterizes whether two cells when coupled electrically can generate

sustained, synchronized oscillations like those observed in inferior and Yarom 1993).
olivary cells in slices, of low amplitude (0.1–10 mV) in the fre- Several observations are noteworthy. The STO frequency
quency range 4–10 Hz. We found that it is not necessary for either ranges over 4–10 Hz, and the amplitude varies between 3
cell to be a spontaneous oscillator to obtain a sustained oscillation. and 10 mV (Llinás and Yarom 1986a). STOs were observed
On the other hand, two spontaneous oscillators always form an in only 10% of the slice preparations; in each oscillatingoscillating network when electrically coupled with any arbitrary

slice, they were recorded in most of the neurons encounteredcoupling conductance. In the case of an oscillating pair of electri-
(Lampl and Yarom 1997; Yarom 1991). They are sensitivecally coupled nonidentical cells, the coupling current varies period-
to calcium blockers, but are unaffected by application ofically and is nonzero even for very large coupling values. The
sodium blockers (Benardo and Foster 1986; Llinás andcoupling current acts as an equalizing current to reconcile the

differences between the two cells’ ionic currents. It transiently Yarom 1986a). Octanol, a low-threshold calcium current
depolarizes one cell and/or hyperpolarizes the other cell to obtain blocker (Llinás and Yarom 1986b), blocks the STOs (Lampl
the regenerative response(s) required for the synchronized oscilla- and Yarom 1997). Gross extracellular stimulation affects
tion. We suggest that the subthreshold oscillations observed in the the oscillations, but intracellular stimulation of any given
inferior olive can emerge from the electrical coupling between

neuron does not (Llinás and Yarom 1986a). On the otherneurons with different channel densities, even if the inferior olive
hand, global hyperpolarization of the neurons (by decreasingnucleus contains no or just a small proportion of spontaneously
the extracellular K/ concentration) reversibly blocks theoscillating neurons.
STO (Lampl and Yarom 1996). In cases where the mem-
brane potential is not oscillating, neither extracellular nor

I N T R O D U C T I O N intracellular stimuli can make the impaled neuron oscillate.
Yet, intracellular injection of a hyperpolarizing current pulseThe olivocerebellar system, which is involved in motor
may generate a rebound response on release to rest. Thiscontrol (Holmes 1939; Llinás 1984; Llinás and Welsh 1993)
rebound response consists of one or more low-threshold cal-and may also participate in motor learning (Albus 1971;
cium spikes. The amplitudes of these responses decreaseMarr 1969; Robinson 1976), generates a rhythmic activity
successively; the neuron behaves like a damped oscillatorat a frequency of Ç10 Hz. This rhythmic activity is ex-
(Yarom 1991).pressed as a temporal relationship of complex spike activity

Because IO cells are electrically coupled (de Zeeuw etin the cerebellum (Llinás and Sasaki 1989), and, under
al. 1990; Llinás and Yarom 1981; Llinás et al. 1974; Sotelopathological conditions, it is manifested as an ‘‘enhanced
et al. 1974), it has been hypothesized that the IO networkphysiological tremor’’ (Llinás 1984). It has been postulated

that the subthreshold spontaneous (sinusoidal-like) oscilla- is composed of damped oscillators that, when coupled, gen-
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erate a sustained oscillatory behavior (Yarom 1991). Several
lines of evidence support this hypothesis. First, develop-
mental studies show a clear correlation between the times
of gap junction formation and the development of STOs in
rats (Bleasel and Pettigrew 1992). Second, simultaneous
recordings from two neurons show that nearby neurons oscil-
late with the same frequencies and phases (Benardo and
Foster 1986; Llinás and Yarom 1986a). Third, pharmacolog-
ical treatments that block electrotonic transmission, such as
exposure to bicarbonate-buffered solution, abolish the STO
(Bleasel and Pettigrew 1994). Fourth, even if some individ-
ual cells oscillate spontaneously, there is no evidence that
the proportion is large enough that these cells could act as
a pacemaker to drive a network rhythm.

Isopotential quiescent cells that are identical in all proper-
ties cannot mediate sustained synchronized oscillations when
coupled via linear-resistive gap junctions. Thus we have
developed a heterogeneity hypothesis that could explain the
generation of STOs in the IO. We constructed an experimen-
tally based yet minimal model of IO cells that contains only
two currents: a low-threshold, inactivating calcium current
and a passive leakage current. We showed that different
combinations (amounts) of these two currents can support
markedly distinct electroresponsiveness of the IO cells, in-
cluding cells with a unique stable resting state (possibly with
damped oscillatory transients) , spontaneously oscillating
cells, or bistable cells with plateauing behavior. Utilizing
the model, we demonstrate how two different nonoscillating
neurons can generate low-amplitude oscillations when they
are electrically coupled.

M E T H O D S

Extraction of voltage-clamp data

The low-threshold calcium current typical of IO neurons is the
FIG. 1. Experimental extraction of activation and inactivation curves.major conductance responsible for the generation of STOs (Lampl

A : activation (m3
` , ●, j, m, ., l) and inactivation (h` , s, h, n, ,, L) dataand Yarom 1996; Llinás and Yarom 1986a; Manor 1995). We from several different olivary neurons. Solid curves: Boltzman functions

extracted the gating kinetics of this conductance by voltage-clamp (Eq. 1 and 2) that are fitted to these data. Experimental details are given
experiments. A detailed description of the experimental results, in Manor (1995). B : data for the time constants of inactivation of several
the space-clamp problems, experimental protocols, and theoretical olivary neurons. Solid curve: best fit to the data (Eq. 3) .
validations is given elsewhere (Manor 1995). With voltage-clamp
data from 15 cells, we determined an activation curve (m3

`) and The activation time constant, tm , was found to range betweenan inactivation curve (h`) as shown in Fig. 1A. The solid curves 5 and 15 ms, an order of magnitude faster than th . Thus we approxi-are the equations mated the activation as an instantaneous function of the membrane
potential. That is, m É m`(V ) .

h`(V ) Å F1 / expSV / 85.5
8.6 DG01

(1)
SINGLE-NEURON MODEL. Two differential equations govern the
dynamics of the single cell

and
dV

dt
Å 0 1

Cm

(Iion 0 Iapp ) (4)
m 3

`(V ) Å F1 / expS061 0 V

4.2 DG03

(2)

and
The similarities between the results for the different cells further dh

dt
Å f

h`(V ) 0 h

th(V )
(5)support the accuracy of our voltage-clamp protocols. The depen-

dence of the inactivation time constant (th) on voltage was ex-
tracted from six cells (Fig. 1B) . It is comparable with the time where V is the membrane potential ( in mV), Cm Å 1 mF/cm2 is
constant of inactivation found in thalamic relay neurons (Coulter the specific capacitance of the membrane, and f is the temperature
et al. 1989; Huguenard and Prince 1992). Our data are best fit correction factor (which we set to 1), Iapp is the applied current,
(solid curve) with the following bell-shaped equation and Iion is the sum of two ionic currents, a low-threshold calcium

current IT and a leakage current IL (all currents in mA/cm2)
th(V ) Å 40 / 30F1 / expSV / 84

7.3 DG01

expSV / 160
30 D (3)

Iion Å IT / IL (6)
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solution trajectories are curves in the V -h plane. The nullclines ofIT is described by the Hodgkin-Huxley formalism with two gating
the system are the two special curves (not trajectories) along whichvariables: the rapid activation variable m and the inactivation vari-

able h dV

dt
Å 0,

dh

dt
Å 0 (9)

IT Å gV Tm 3
`h(V 0 VCa) (7)

From Eq. 5, the h nullcline is the curve
where gV T is the maximal calcium conductance (in mS/cm2) and h Å h`(V ) (10)
VCa is the calcium reversal potential, set to /120 mV. The leakage
current IL is modeled by Denoting the relationship between V and h along the V nullcline

by h Å NV (V ) , we see that it is defined implicitly from Eq. 4
IL Å gL(V 0 VL)

0 Å 0Iion (V, NV ) / Iapp (11)

where gL is the leak conductance and VL is the reversal potential Important insights may be obtained by plotting the nullclines
of the leakage current, set to 063 mV. and examining their relationship (Fitzhugh 1969; Rinzel and Er-

mentrout 1989). Phase planes in this paper are found in Fig. 5;
here, one sees the usual N-shaped V nullcline of an excitable sys-

Tools for analyzing the model’s dynamic behavior tem. An intersection of the two nullclines defines a steady-state
point (VV , hV ) . At critical parameter values where an HB occurs, Eq.

We are interested in studying the oscillatory (periodic) and 8 is satisfied. Thus a necessary condition for Hopf-like instability of
steady-state ( time-independent) modes of behavior of our neuron (VV , hV ) is
model as functions of the channel densities and injected current.
As parameters are varied, the behavior may change from one mode S0 ÌIion

ÌV DZ
VU ,hU

ú Cmf

th(VU )
(12)

to another if a solution loses stability; a system subject to physio-
logical random noise cannot reside for long in an unstable state.

(Rinzel and Ermentrout 1989). To interpret this condition geomet-In some regimes, multiple modes coexist and, depending on the
rically, we rewrite it in terms of the V nullcline’s slope. Differenti-initial conditions (the initial values of V and h) , the system may
ating Eq. 11 yields an expression for the slope N *V where * denotesconverge to any one of the stable (i.e., attracting) modes. Thus it
derivative with respect to V . Thus, with the use of the chain ruleis important to determine the stability of the solution. Here we
for differentiation, we getbriefly indicate aspects of considering the stability of steady-state

solutions. By definition of a steady state, each variable’s time
0 Å 0 ÌIion

ÌV
0 ÌIion

Ìh
N *Vderivative equals zero. One asks whether a small perturbation from

this steady state will decay to zero with time (the system returns
to the steady state) or grow, leading the system into a different This equation relates the slope of the I-V relation to the V nullcline’s
behavior. In the former case, the steady state is stable; in the latter slope
it is unstable.

According to linearized perturbation theory, for a two-variable 0 ÌIion

ÌV
Å ÌIion

Ìh
N *V (13)

cell model the stability is determined by the eigenvalues of the
two-dimensional Jacobian matrix. If the eigenvalues have negative In the present model
real part, the steady state is stable; it is unstable if either eigenvalue
has positive real part. When the eigenvalues have an imaginary ÌIion

Ìh
Å ÌIT

Ìh
/ ÌIL

Ìh
Å ÌIT

Ìh
Å gV Tm 3

`(V 0 VCa)
part, time-dependent trajectories near the steady state are oscilla-
tory, either damped or growing. As parameters are modified, if the

In particular, applying these expressions at the steady state (VV , hV ) ,real part of a complex pair of eigenvalues changes from negative
we can express the instability condition (Eq. 12) in the followingto positive, the steady state changes from stable to unstable. More-
equivalent wayover, at the transition point the eigenvalues sum to zero. Thus,

because in general the eigenvalue sum equals the sum of the Jacobi-
0N *V ú

Cmf

th(VU )gV Tm 3
`(VCa 0 VU )

(14)an’s diagonal elements, the following condition is satisfied by our
system at such a transition point

where N *V is the slope of the V nullcline (h Å NV ) at VV .
In other words, a steady state (for such a two-variable model)01

Cm

ÌIion

ÌV
0 f

th

Å 0 (8)
can be unstable only if it occurs where the V nullcline has a slope
that is sufficiently negative; or equivalently, from Eq. 12, where
the membrane’s instantaneous I-V relation has sizable negativewhere ÌIion /ÌV is the slope of the instantaneous current-voltage (I-

V ) relation (Rinzel and Ermentrout 1989, their Eq. 5.19) . This resistance. Moreover, destabilization cannot occur if the rate of
inactivation (Cmf /th) is too large or the maximal calcium conduc-point is called a Hopf bifurcation (HB). In general, a periodic

solution, also called a limit cycle, emerges. The oscillation’s fre- tance (g
V T ) is too small (see Eq. 14) . By considering how the

nullclines change with parameter values, one can identify rangesquency equals 2p times the imaginary part of the eigenvalues;
the emergent oscillation may be stable or unstable, depending on where multiple steady states or oscillations may or may not exist.

Also, examination of the phase plane and nullclines allows one toparameter values. For a more detailed description of linear pertur-
bation theory methods, see Edelstein-Keshet (1988) and Strogatz know where V and h are increasing or decreasing and thereby to

approximately predict the form of trajectories, such as limit cycles.(1994).
The steady states and their stability for our system were also We used the software XPPAUT by B. Ermentrout to simulate

the time courses of V and h and to carry out phase plane analysisexplored graphically by phase plane methods (see Edelstein-Keshet
1988 and Strogatz 1994 for general background). A phase plane by computing nullclines and stability of steady states. XPPAUT

(available at ftp: / / ftp.math.pitt.edu /pub /bardware ) also incor-portrait is a two-dimensional plot describing the dynamic relation-
ships between the two dependent variables, in our case V and h; porates important features of the AUTO package (Doedel
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1981) . AUTO can perform bifurcation analysis of systems of stable steady state changes from purely exponential decay
ordinary differential equations. Among its capabilities are trac- to a damped oscillatory decay; that is, where the eigenvalues
ing stationary ( steady-state ) solutions as a parameter of the change from real to complex (see METHODS). Below this
model is continuously changed, detecting limit points ( such as curve, our cell model has an oscillatory component (either
HB points, turning points, period doubling bifurcations, bifurca- sustained or damped). Thus some stable cells are dampedtions to tori, etc.) , tracing periodic solutions, and following a

oscillators. The divisions in Fig. 2 depend on the parameterslimit point as two parameters of the model are free to change
(VL and VCa) and on the gating kinetics for IT . The techniques(a two-parameter continuation problem) . We used AUTO to
used to compute this behavioral segmentation are describedexplore the behavior of an isolated cell ( a two-variable model ) ,
in APPENDIX A.or a pair of coupled cells (a four-variable model ) , when different

parameters of the models are modified. In the latter case, the Note that the zones classifying the neurons by their re-
stability of the full system is estimated by computing the eigen- sponse to current stimulus appear continuous on the g

V T-gL
values of a 4 1 4 Jacobian matrix. We focused on changes in plane, except for small parameter regions near zonal bound-
g
V T , gL , and Iapp because these were the only parameters we modi- aries where mixed behaviors might occur. It is not essential

fied from run to run, and from cell to cell in the same run. for us to classify separately these mixed behaviors here (see
APPENDIX A). When g

V T is very small, Eq. 14 implies that
Transient behavior in voltage-clamp mode the condition for instability cannot hold, even if gL is reduced

proportionally. With larger values of g
V T , a neuron can change

For an additional viewpoint on the dynamic stability of mem- from a stable cell to an SO, then to a CO and finally to abrane potential steady states, more familiar to some physiologists,
conditional bistable cell by continuously decreasing gL (orwe used NEURON (Hines 1993) to simulate voltage- and current-
increasing g

V T ) .clamp experiments and to construct momentary voltage-current
In Fig. 3, A–D, we show the stimulus-response dia-(V -I) relationships, as defined in Jack et al. (1983). Resting values

grams for the four types of cells mentioned above. Onlyof the membrane potential and the inactivation variable were deter-
mined by an iterative procedure. Then the voltage was stepped gL varies (decreasing) from A to D; the insets show the
from the resting state to some clamped value. At some specified g

V T -gL combination for each case. The diagrams represent
time t* after the onset of the voltage step, we measured the total the voltage only for steady ( time-independent ) or periodic
ionic current (IT / IL) . The momentary V -I curve corresponding states, both stable ( solid ) and unstable (dotted) . The
to time t * was constructed by repeating this for several clamping curve corresponding to the steady state thus constitutes a
voltages. We note that momentary V -I curves can be computed cell’s steady-state I-V relation. A stable cell (A ) has afor the general case of a pair of coupled neurons, and thus may

unique stable steady-state V that increases monotonicallyhave some advantage over phase plane methods.
with applied current. Its I-V relation is nearly linear except
near the resting potential ( Iapp Å 0) , where it bends be-

R E S U L T S cause of the existence of a steady-state ( ‘‘window’’ ) cal-
cium conductance. An SO (B ) is characterized by havingCells with different channel densities show various
a stable limit cycle solution in a range including positiveresponses to current injection
and negative currents. At any of these currents, the cell

Our neuron model could be approximately classified, de- oscillates with voltages extending between the low and
pending on the calcium and leakage conductances, into four high values on the solid portion of the bubble-shaped
different types with qualitatively different response for curve. In the case of a CO (C ) , a stable limit cycle solution
steady current injection: a stable neuron, a spontaneous oscil- exists in a range of currents that is strictly negative or, as
lator (SO), a conditional oscillator (CO), and a conditional occurs in some small parameter range for our chosen IT

bistable neuron. These four behavioral types are illustrated kinetics, strictly positive. For low enough gL , the I-V rela-
by the V time courses under current clamp in Fig. 2, insets. tion develops an N-shaped character, and thus multiple
A stable neuron responds to current injection by settling to stable steady states may coexist for some current levels.
a unique and stable membrane potential, perhaps after a Figure 3 D shows such a case, in which the cell is bistable.
transient nonlinear response. The steady-state I-V relation is In a limited range of negative currents, two stable steady
monotonic increasing. An SO is an autorhythmic neuron, solutions coexist. Therefore, depending on initial condi-
requiring no input to oscillate. In general, it also oscillates for tions, the cell settles to either of two stable steady poten-
a range of applied currents, extending from some negative tials. In the conditional bistable case, if a limit cycle exists
minimum to some positive maximum. A CO is driven to for some range of applied current it is unstable in most
oscillate by injection of either strictly positive or strictly cases. Such a cell cannot oscillate for any steady injected
negative currents. Except for a very small range of parame- current. Although this empirical observation holds for our
ters, our model cell is a CO only for negative current. We particular cell model, and may hold for some other models,
define a conditional bistable neuron as one that, in response one should not expect it (or other features shown in Fig.
to a range of currents, converges to one of two membrane 2) to hold for behavioral state categorizations of excitable
potentials. The final membrane potential depends on the ini- membrane systems in general.
tial conditions, i.e., on the values of V and h before the
current injection. Also, a brief current pulse can switch the Coupling two nonoscillating neurons may generate
membrane potential from one stable value to the other (not sustained oscillations
shown). Figure 2 shows the regions (separated by ) in
the g

V T-gL plane that correspond to the four neuron categories. We begin our study of rhythmogenesis in olivary networks
by considering in this paper the behavior of two coupledThe dotted line shows the conductance values at which the
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FIG. 2. Different combinations of channel densities
yield four types of cells. The g

V T-gL plane is approxi-
mately divided into four different zones (separated by

), corresponding to model cells with different re-
sponse properties to steady current injection. The zone
labeled ‘‘stable’’ corresponds to cells whose membrane
potential evolves to a stable steady state, unique for each
Iapp value. Inset : voltage response of a stable cell (gV T Å
0.4 mS/cm2, gL Å 0.25 mS/cm2) to current pulses of
00.5, 0, and 0.5 mA/cm2 injected for 500 ms. Scale bars:
0.5 s, 5 mV. Cells within the ‘‘conditional bistable’’
zone converge to either 1 of 2 stable steady membrane
potentials, depending on the initial conditions. This is
exemplified by a cell with gV T Å 0.4 mS/cm2 and gL Å
0.06 mS/cm2 ( inset) . Current pulses of 0, 0.03, and
0.06 mA/cm2 are superimposed on a tonic current of
00.3 mA/cm2. In the case with Iapp Å 0.06 mA/cm2, V
does not return to its original level after the pulse termi-
nates. Between these zones are cells that oscillate for
some range of negative currents, the ‘‘conditional oscil-
lator’’ zone. Inset : voltage time course of such a cell
(gV T Å 0.4 mS/cm2, gL Å 0.1 mS/cm2), when injected
with step currents of 00.18 (periodic activity) , 0, and
0.18 mA/cm2. Cells in the ‘‘spontaneous oscillator’’
(SO) zone generate oscillations without any stimulus.
Inset : membrane potential time course of such a cell
(gV T Å 0.4 mS/cm2, gL Å 0.15 mS/cm2) with no current
(periodic activity) , as well as with Iapp Å 00.5 and 0.5
mA/cm2, where the oscillations are abolished during the
current pulse. Dotted line: curve where the eigenvalues
change from real to complex (see METHODS). Below
this curve, the eigenvalues are complex and the system
has oscillatory components, either sustained or damped.
See Appendix A for methods to determine zonal bound-
aries.

cells, identical in all but their channel densities (gL and g
V T ) . a brief negative current (at n

o ) to show how the system
converges back to its steady, quiescent state. In Fig. 4,For each of the two cells i, j Å 1,2, the differential equation

for the voltage is now A–D, one of the two neurons is a stable cell (circle ) and
the other is a CO (square ) . In all four cases, both neuronsdV j

dt
Å 0 1

Cm

[Iion, j 0 gcoupr(Vi 0 V j) 0 Iapp ] (15) are quiescent when isolated (gcoup Å 0) . However, tran-
sient hyperpolarization induces a short sequence of
damped oscillations. When electrically coupled, the be-where gcoup is the coupling conductance. Intuitively, if two
haviors of the four pairs differ considerably. Figure 4ASOs are coupled electrically they will oscillate, phase-locked
illustrates the concept stated above. The average of thetogether, if their intrinsic frequencies are not very different.
two cells’ channel densities ( labeled with a cross ) fallsMore interestingly, we show that cells that do not oscillate
within the SO zone, and the pair forms sustained oscilla-spontaneously when isolated may form sustained, low-am-
tions when gcoup is above some minimum value. Theseplitude oscillations when electrically coupled.
oscillations are low amplitude and in phase; the amplitudeThe most straightforward case to consider is a pair of
rises and the frequency decreases with increasing couplingcells that is strongly coupled. The limiting situation is
conductance (not shown) . For gcoup less than the minimumfor infinite coupling conductance (gcoup Å ` ) , and this is
value, the cell pair shows damped oscillations followingequivalent to a single neuron whose gL and g

V T values are
transient current perturbations. In Fig. 4B, the pair oscil-the average of the corresponding conductances in the two
lates indefinitely for coupling conductances of 0.1 andneurons. Clearly, only when these average conductances
0.25 mS/cm2 , but not for a coupling conductance of ¢0.5fall within the SO zone is the ‘‘average cell’’ oscillating
ms/cm2 . In this case, the amplitude rises and decreasesspontaneously. If the average cell does oscillate, then one
with increasing coupling conductance, whereas the fre-expects that the pair will also oscillate for some range of
quency decreases with increasing coupling conductance.gcoup that extends from some finite value to infinity (and
Because this pair’s average channel densities falls in theour analysis in APPENDIX B confirms this expectation for
stable (ST) zone, we expect that with high couplingstrong coupling) . This observation, coupled with numeri-
strengths this pair will be quiescent. The strongly coupledcal simulations, gives us a large parameter range for gen-
pair shows damped oscillatory behavior in response toerating oscillating cell pairs. Figure 4, A–E, shows the
transient hyperpolarization. Figure 4, C and D, demon-temporal behavior of five neuron pairs. For each pair,
strates two cases that do not form sustained (only damped)a few coupling conductances are examined ( rows) . The
oscillations at any of the coupling conductances shown,schematic above each column illustrates the type of neu-
nor for any other coupling conductances (not shown) .rons defined on the g

V T -gL plane (see Fig. 2 ) . For those
pairs that are not oscillating at steady state, we inject Note that in Fig. 4C the average channel densities falls
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FIG. 3. Response diagrams for current
injection for the four types of neurons. The
steady-state and periodic (repetitive firing)
solutions, voltage amplitude vs. applied
current, for four different cell types. Each
inset shows the combination of calcium
(gV T ) and leak (gL) conductances (marked
1 on the gV T-gL plane copied here from Fig.
2) of that panel’s cell. Solid and dotted/
dashed lines: stable and unstable solutions,
respectively. A : steady-state solution of a
stable cell (gV T Å 0.4 mS/cm2, gL Å 0.25
mS/cm2). Resting potential of this cell
( intersection with ordinate) is 061 mV. B :
response states of an SO (gV T Å 0.4 mS/
cm2, gL Å 0.17 mS/cm2). For Iapp less than
00.137 mA/cm2 and Iapp greater than 0.058
mA/cm2, a unique and stable fixed point
solution exists. For 00.132 mA/cm2 õ
Iapp õ 0.058 mA/cm2, a stable limit cycle
solution coexists with an unstable fixed
point solution. For example, with no cur-
rent the cell oscillates between 054.3 and
060.3 mV (with a frequency of 5.4 Hz, not
shown) with an unstable limit cycle (heavy
dashes). C : current-voltage (I-V ) curve of
a conditional oscillator (gV T Å 0.4 mS/cm2,
gL Å 0.11 mS/cm2) is N shaped. A stable
limit cycle coexists with an unstable steady
state for 00.284 mA/cm2 õ Iapp õ 00.114
mA/cm2. For other current levels there is
a unique, stable steady state. Resting poten-
tial is 053.6 mV. D : case of a bistable cell.
Channel densities are gV T Å 0.4 mS/cm2,
gL Å 0.05 mS/cm2. For00.434 mA/cm2 õ
Iapp õ 00.235 mA/cm2, 2 stable steady
states coexist. With no current, the fixed
point (resting potential) is 048 mV. Note
change in ordinate scale between A, B and
C, D. LP1 and LP2: limit points 1 and 2.

in the CO zone ( just below the border of the SO zone) . neither of the two isolated neurons is an SO, the pair gener-
ates sustained oscillations if the two following conditionsNote also that in Fig. 4 D the line connecting the two cells

on the g
V T -gL plane does not cross the SO zone. Below we hold.

1) The line connecting the two cells on the g
V T-gL planerefer to these two observations in formulating a heuristic

criterion to predict which pairs of neurons are likely to crosses the SO zone.
2) The combination of average channel densities fallsdevelop oscillations when electrically coupled. Figure 4 E

demonstrates a case where one of the two neurons was inside the SO zone or in the ST zone. When the average is
in the SO zone, the two cells oscillate for any couplingstable ( circle ) and the other was a conditional bistable

cell ( square ) . At steady state, the two cells are quiescent conductance above a critical value; when in the ST zone,
the pair is oscillatory only for a finite range of couplingfor coupling conductances of 0, 0.1, and 0.25 mS/cm2 ,

yet they generate a periodic sustained behavior with a conductances.
[Of course, if either isolated cell is an SO, lying insidecoupling conductance of 0.5 mS/cm2 . The combination

of average channel densities falls within the SO zone. the SO zone, then the pair will oscillate if weakly coupled,
that is, for some (perhaps small) range of gcoup , starting fromExcept for the strong coupling case, it is generally difficult

to predict analytically which coupled neuron pairs will spon- gcoup Å 0.]
To support our approximate rule, we systematically testedtaneously oscillate. Nevertheless, on the basis of our empiri-

cal experience we have developed the following ‘‘rule of all possible pairs, with calcium and leak conductances assigned
from the discrete range 0.05 / i ∗ 0.05, i Å {0,1, . . . ,9}.thumb’’. We found that, in the majority of the cases where
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FIG. 4. Time domain behavior of electrically coupled pairs of neurons. Shown are several selected examples of electrically
coupled pairs of neurons. Each column (A–E) represents a specific pair of neurons; as in Fig. 3, the inset gives the
corresponding cells’ conductances (g

V T , gL) . Rows: different values of electrical coupling conductance gcoup , labeled at far
right. Each pair of sweeps shows the two cells’ voltage time courses. In pairs that were not spontaneously oscillating, a 20-
ms, 0.1-mA/cm2 pulse was injected (at the time marked n

o ) . Squares and circles in the inset correspond to the top and bottom
sweeps, respectively. Crosses in insets correspond to the ‘‘average’’ cell. A–D : 1 of the neurons is stable and the other is
a conditional oscillator. In all four of these cases the two cells are quiescent when isolated (gcoup Å 0 mS/cm2). Nevertheless,
very different behaviors are observed when the cells are electrically coupled. In A, the pair forms sustained oscillations for
electrical coupling of 0.25 and 0.5 mS/cm2. As the coupling increases, the amplitude increases, and the frequency decreases.
Note that the average cell is an SO. B : pair oscillates indefinitely for electrical coupling of 0.1 and 0.25 mS/cm2, but not
for higher coupling values. The average cell is a stable cell. C and D : two examples of pairs in which the oscillations damp
out, no matter what coupling value is used. Note that in C the line connecting the two cells passes through the SO area, but
the average cell is a conditional oscillator. D : line connecting the two cells does not cross the SO zone. E : case of a stable
neuron electrically coupled with a bistable neuron. The bistable cell may settle to either of two membrane potentials in a
negative range of applied currents. Oscillations are not sustained for coupling values of 0.0, 0.1, and 0.25 mS/cm2. Yet,
with a coupling of 0.5 mS/cm2, the pair oscillates indefinitely. Note that the average cell of this pair is an SO.

Thus the total number of pairs tested was 5,000. For each pair, Next we study in detail the mechanism by which two
nonspontaneously oscillating neurons generate oscillationswe ran AUTO with the coupling conductance as the control

parameter, ranging from 0 to 10 mS/cm2. A pair was declared when they are electrically coupled.
as oscillatory if one or two HB points were detected by AUTO.
We found no combinations of non-SOs that could oscillate Mechanism for generating sustained oscillations in
when their average is in the CO zone or in the ‘‘conditional coupled neurons
bistable’’ zone. We found only two pairs (of the 5,000 tested)
that could oscillate when the connecting line does not cross Two different approaches are used to understand this gap-

junction-mediated rhythmogenesis. In the first approach, wethe SO zone, and in those two cases the connecting line passes
very close to the zone’s tip. study extreme parameter regimes for which the full system
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of four ordinary differential equations can be approximated From this equation, we see that Icoup equilibrates very
rapidly to approximately half the difference (Iion,1 0 Iion,2 ) .by analytical (asymptotic) methods to reduced systems of

equations that can be more easily interpreted and solved. Then, after a transient phase (with duration of order th)
during which the gating variables equilibrate to hav , we haveIn the second approach, we study stability empirically via

momentary I-V relations, by simulating the full system with Icoup É IH coup Å [Iion,1 (Vav , hav ) 0 Iion,2 (Vav , hav )] /2 (21)
one of the two cells voltage clamped.

This result explicitly shows that if the cells are nonidentical,For the case of strong coupling, we use perturbation theory
the coupling current is of size comparable with the ionicto develop an approximate description for a pair’s behavior.
currents. For strongly coupled cells to achieve near-equipo-To implement this method it is useful to define, for compari-
tentiality, Icoup acts as an equalizing current to offset theson purposes, a reference intrinsic conductance gref ; for ex-
difference between their ionic currents, because of the differ-ample, we could use gref Å gL . In the approximation scheme
ent g

V T and gL values. The result also shows that, generally,the ratio gref /gcoup is treated as a small parameter e (see
Icoup is time varying.APPENDIX B for details, and see Nayfeh 1973 for a general

Some of these points are illustrated in Figs. 5 and 6 fordescription of perturbation methods) . We assume that each
a case similar to that in Fig. 4A. We start by describing thecell’s variables can be represented as a perturbation series
case of infinite coupling (Fig. 5A) . The network composedin powers of e. The lowest-order term for the membrane
of a stable cell (cell 1) infinitely coupled to a CO (cell 2) ispotentials (corresponding to the case of infinite coupling)
equivalent in its dynamic behavior to a cell with the averageis Vav , the membrane potential of the average cell. Thus
channel densities. Thus this dynamic behavior can be evalu-

V j( t) Å Vav ( t) / e£j,1 ( t) / e 2
£j,2 ( t) / rrr (16) ated by examining the nullclines of the average cell. The V

nullclines of cell 1 (r r r) , cell 2 ( – – – ), and the averageThe subscript j here distinguishes the two cells, j Å 1,2. The
cell ( ) are plotted in the V -h plane, along with the hsecond subscript denotes the coefficients for the successive
nullcline ( ) , which is the same for each of the threeterms in the series approximation. These coefficients are
cases. The positive slopes at which the V nullclines of cellof order one, that is, independent of e. With the use of a
1 and cell 2 intersect with the h nullcline show that thesecorresponding series for the h variables, one then substitutes
two cells are quiescent at rest, i.e., with no injection ofthese representations into the four differential equations.
current (see METHODS). However, the intersection of the VAdding the two current balance equations and setting e to
and h nullclines of the average cell occurs at a negativezero yields the equation for Vav

slope of the V nullcline (arrow). A simple calculation showsdVav

dt
Å 0 1

2Cm

(Iion,1 / Iion,2 ) (17) that with the parameters chosen for this case, Eq. 14 is
satisfied. Thus the fixed point of the average cell is unstable;
the average cell has a stable limit cycle solution, predictingwhere the terms Iion, j contain the different values of g

V T and
that for strong coupling this pair should oscillate spontane-gL for the two cells; the factor 2 multiplying Cm comes from
ously. Such a case can be seen in Fig. 5B, where the twohaving added the two equations and yields the expected
cells are electrically coupled with gcoup Å 0.5 mS/cm2.average. The equations for hav in the two cells are identical
The limit cycle trajectories of cell 1 (r r r) and cell 2to lowest order. Next we show that there is a significant
( – – – ), which were computed by simulation of the fullcoupling current that flows between two nonidentical cells,
system, are superimposed on the nullclines of the averageeven when they are strongly coupled (a reader who wishes

to bypass the following derivation may advance to Eq. 21 system ( ). These periodic trajectories are quite close
to the periodic trajectory computed for the average equationand the succeeding text) .

The coupling current that flows through the gap junctions ( ) . As must be, this limit cycle trajectory crosses the
from cell 2 to cell 1 is defined as average cell’s V and h nullclines horizontally and vertically,

respectively. We note here that the amplitude of the h oscilla-
Icoup Å gcoup (V2 0 V1) (18)

tion, as for the V oscillation, is quite small.
Figure 5C shows the time courses of the ionic currentsInserting the series approximations into Eq. 18 and noting

(Iion,1 , r r r; Iion,2 , – – – ) and the coupling currents (Icoupthat the common terms Vav cancel, we find that to lowest
and 0Icoup , ) , when cell 1 and cell 2 are electricallyorder
coupled with gcoup Å 0.5 mS/cm2.

Icoup É IH coup Å gref (£2,1 0 £1,1 ) (19)
From the definition given in Eq. 18, Icoup is the current

flowing from cell 2 to cell 1. For each cell, the couplingIn general, Ĩcoup is not small but of order one when the cells
current’s time course is seen as comparable in amplitudeare nonidentical. Going back and subtracting the current
with the ionic current. As our perturbation results show,balance equations for the two cells, using the series represen-
this statement remains true even for very strong coupling.tations and keeping only the lowest-order terms, we get
Curiously, in this particular case, all four currents oscillateCm

2gcoup

dIH coup

dt
Å (Iion,1 0 Iion,2 ) /2 0 IH coup (20) as expected but they do not change sign: Iion,1 and Icoup are

strictly depolarizing, whereas the opposite is true for Iion,2

and 0Icoup . However, the net membrane current, ionic pluswhere the voltage argument of Iion, j is Vav . This equation
describes approximately the dynamics of Icoup . The leading coupling, does change sign: it periodically varies from posi-

tive (when, from Eq. 15, the voltage decreases) to negativefactor Cm/gcoup is the time constant for the relaxation of Ĩcoup ,
and it is very brief compared with the reference time constant (when the voltage increases) . This can be seen by compar-

ing, for example, Iion,1 with Icoup . Whenever Iion,1 ú Icoup , theCm/gref .
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FIG. 5. Similarity between infinite and strong coupling. The dynamics of two strongly coupled cells are compared with
the behavior of the average cell. Cells 1 and 2 are as in Fig. 4A (g

V T Å 0.4 mS/cm2, gL Å 0.1 mS/cm2 and g
V T Å 0.4 mS/

cm2, gL Å 0.2 mS/cm2, respectively) . A : V nullclines of cell 1 (r r r) , cell 2 ( – – – ), and the average cell (g
V T Å 0.4

mS/cm2, gL Å 0.15 mS/cm2; ) . The average cell is electrically equivalent to the case of cell 1 coupled to cell 2 with
infinite coupling. In all 3 cases, the h nullcline ( ) is identical. In each case, the equilibrium (fixed point) occurs at the
intersection of the V nullcline with the h nullcline (059.8, 052.8, and 056.6 mV for cells 1 and 2 and average cell,
respectively) . In the cases of cell 1 and cell 2, the slope of the V nullcline at the intersection is positive. In the case of the
average cell, the slope is negative and, with the parameters of the model, it satisfies the condition for instability (Eq. 14) .
B and C : cell 1 and cell 2 are electrically coupled with gcoup Å 0.5 mS/cm2. In B, the limit cycle trajectories of cell 1
(r r r) and cell 2 ( – – – ) and the limit cycle trajectory of the average cell ( ) are superimposed on the nullclines of
the average cell ( ) . Arrows on limit cycle trajectories: direction of motion. In C, the ionic currents of cell 1 (r r r)
and cell 2 ( – – – ) and the coupling currents ( : Icoup , from cell 2 to cell 1, and 0Icoup , from cell 1 to cell 2) are plotted
as functions of time.

difference Iion,1 0 Icoup is positive and dV1 /dt õ 0; when make this difference small, i.e., to achieve V1 É VL . The
other cell (cell 2) is a CO or a conditional bistable cell. TheIion,1 õ Icoup , dV1 /dt ú 0.

Figure 6 illustrates the accuracy of the strong coupling differential equation for its voltage reduces to
approximation for Icoup derived in Eq. 21. In Fig. 6A, the dV2

dt
Å 0 1

Cm

[Iion,2 0 gcoup (VL 0 V2)] (22)time courses for the actual and approximate coupling current
are compared for the case of Fig. 5. Even though the coupling

orconductance is not very large (gcoup Å 0.5 mS/cm2), the
period and minimum amplitude are quite accurate; the maxi- dV2

dt
Å 0 1

Cm

[gV T m3h(V2 0 VCa) / gL(V2 0 VL) / gcoup (V2 0 VL)]
mum amplitude differs by only Ç20%. In Fig. 6B one sees
that the accuracy improves as gcoup increases. Note, to lowest

Å 0 1
Cm

[g
V Tm3h(V2 0 VCa) / g *L(V2 0 VL)] (23)order, the approximate coupling current Icoup does not depend

on gcoup ; thus the approximate amplitude measures appear
here as the horizontal dotted lines. The amplitude of Icoup where g*L Å gL / gcoup . In other words, the effect of coupling

cell 1 to cell 2 is approximately equivalent to a mere increaseasymptotically approaches that of the approximate coupling
current Ĩcoup as gcoup increases, in a hyperbolic fashion as of leak conductance for cell 2 .

From Fig. 2 it can be seen that if the ‘‘new’’ effectiveexpected. Also in Fig. 6B we see that when gcoup õ 0.13
mS/cm2, the cell pair no longer oscillates. The emergence channel densities of cell 2 (g

V T and g *L) are within the SO
zone, the system spontaneously oscillates. This implies thatof the oscillation is an HB at the critical coupling conduc-

tance; for gcoup ú 0.13 mS/cm2, the system’s fixed point there is a range, a finite range, of gcoup for which this particu-
lar pair of cells forms sustained oscillations. This observation(not shown) is unstable. Figure 6B shows explicitly the

behavior for a cell pair for which the average falls in the is consistent with the rule of thumb that was described in
the previous section, because 1) if cell 1 is a ‘‘strong’’ stablespontaneously oscillating zone, i.e., an oscillation for gcoup

above some critical value. Finally we note that, as can often cell, the average of cell 1 and cell 2 falls within the ST zone
and 2) the line linking the two cells crosses the SO zone (inhappen with perturbation theory, the approximation can give

accurate results even when e is not very small. In the above the strong gL limit, the line is vertical and thus the oscillation
occurs only if the g

V T value for cell 2 exceeds the minimumexample, gcoup is only Ç2–5 times larger than the ionic
conductances—not tens of times larger. g

V T value in the SO zone).
Our rule of thumb can also be supported by consideringAnother extreme case that can be used to simplify the

system of differential equations is one where the coupling a complementary limit. Suppose one of the two cells (for
example, cell 1) has a very large g

V T , compared with gL andis moderate, but one of the two cells (for example, cell 1)
has a very large gL , compared with g

V T and gcoup . Thus cell gcoup . This cell is far to the right beyond the SO region.
Therefore we expect V1 É VCa . Thus for cell 2 we have1 is a strongly stable cell. dV1 /dt is governed mainly by the

difference between V1 and VL , and V1 relaxes quickly to approximately
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case, coupling these two cells is approximately equivalent
to increasing the leakage conductance of cell 2 and to in-
jecting a steady depolarizing current into cell 2. We conclude
from this that if the isolated cell 2 was of the stable type,
this pair will not oscillate, because the increased leakage
conductance pushes it farther into the ST regime and depo-
larizing current (I * here) cannot make a stable cell oscillate
(by definition). This pair, whose average conductances fall
below the SO zone, will not oscillate for any range of gcoup —
as our empirical rule of thumb states.

Consistent with our parenthetical statement succeeding
our rule of thumb, if cell 2 was spontaneously oscillating
and coupled weakly with cell 1 then the pair would oscillate.
According to the above demonstration, if gcoup is small the
conductances g

V T and g*L would still lie in SO zone and a
small depolarizing current would not destroy the stable oscil-
lation. On the other hand, the oscillation will not persist for
nonweak coupling. In such a case, one of two silencing
events will occur: either g*L increases to ‘‘move cell 2’’ into
the stable regime or I* increases to steadily depolarize cell
2 while it is still in SO.

One might argue intuitively about the mechanism for why
a pair of cells (one stable and the other a CO or a conditional
bistable neuron) could oscillate when coupled, as follows.
The stable neuron, cell 1, with a more negative resting poten-
tial, could hyperpolarize cell 2, bringing it into the oscillating
regime. This argument could be used for the extreme case
of very large leak conductance in cell 1, as described in the
previous paragraph. But in general the argument is incom-
plete. It ignores the converse behavior, that coupling would
tend to depolarize cell 1, and contradicts the fact that cell
1 does not oscillate for steady depolarization. The argument
is oversimplified; it can be sharpened on the basis of our
perturbation results. One should not think of the coupling
current as steady or time averaged. It is time varying, and
in such a way that it transiently depolarizes cell 1 and tran-

FIG. 6. Comparison of actual coupling current with approximated cou- siently hyperpolarizes cell 2 to obtain the regenerative re-
pling current in the limit of infinite coupling. Cell 1 and cell 2 are the same sponse of the synchronized oscillation.
as in Figs. 4A and 5. A : actual coupling current (Icoup , computed with Eq.

In the case of nonstrong coupling and moderate values of18) when the two cells are coupled with gcoup Å 0.5 mS/cm2, and the
the leak conductance, we have no analytic treatment forcoupling current predicted from the series approximation in the limit of

strong coupling ( Ĩcoup , computed with Eq. 21, dotted line) . B : stable solu- rhythmogenesis. We cannot compute the eigenvalues of the
tions of the coupling current are plotted as functions of gcoup ( ) . For system in general, and phase plane diagrams cannot be
values õ0.13 mS/cm2, the stable solution is a fixed point. When gcoup ¢ drawn. However, one can gain some insights by computing0.13 mS/cm2, the stable solution oscillates between the two values shown

momentary V -I curves for this case (see METHODS). In Fig.on the plot. Dotted horizontal lines: maximal and minimal values of the
coupling current predicted by the series approximation in the limit of strong 7, momentary V -I curves at 3, 10, and 300 ms are plotted
coupling. for a stable cell (cell 1, Fig. 7A) , a CO (cell 2, Fig. 7B) ,

an average cell (coupling of cell 1 and cell 2 with an infinitedV2

dt
Å 0 1

Cm

[Iion,2 0 gcoup (VCa 0 V2)] (24) coupling, Fig. 7C) , and cell 1 coupled to cell 2 with a finite
coupling (Fig. 7D) . In the case of a single cell (Fig. 7, A–

The last term in this equation can be rewritten as C) , the ordinate represents the ionic current. In the case of
gcoup (VCa 0 V2) Å gcoup (VL 0 V2) / gcoup (VCa 0 VL) (25) a pair of coupled cells (D) , it represents the ionic plus

coupling current. In this latter case, the clamped cell is cellNow inserting this into the current balance equation we get
2. In the case of cells 1 or 2 (Fig. 7, A or B) , the fixed point

dV2

dt
Å 0 1

Cm

[gV Tm3h(V2 0 VCa) / (gL / gcoup )(V2 0 VL) occurs on positive slopes of the momentary V -I curve. Thus
a small depolarizing deviation from the fixed point results

0 gcoup (VCa 0 VL)] in a positive (outward) ionic current, which would hyperpo-
larize the membrane potential back toward the fixed point,

Å 0 1
Cm

[g
U Tm3h(V2 0 VCa) / g *L(V2 0 VL) 0 I *] (26) in a nonclamped situation. Likewise, a small hyperpolarizing

displacement leads to a negative (inward) current that depo-
larizes the membrane back toward the fixed point. In thewhere g *L Å gL / gcoup and I * Å gcoup (VCa 0 VL) . In this
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FIG. 7. Analysis of stability with momentary voltage-current (V -I) curves. Cells 1 and 2 are a stable cell and a conditional
oscillator, respectively, as defined in Fig. 5. The momentary V -I curves for 3, 10, and 300 ms are shown for cell 1 isolated
(A) , cell 2 isolated (B) , the average cell (C) , and the pair, cell 2 and cell 1, coupled with gcoup Å 0.1 mS/cm2 (D) . In the
last case, cell 2 is voltage clamped and the V -I curve shown is for cell 2. In the cases of cell 1 and cell 2, all 3 momentary
I-V curves intersect at the fixed point with a positive slope. The fixed point voltages are 059.8 and 052.9 mV, respectively.
In the case of the average cell, the momentary I-V curves for 3 and 10 ms intersect at the fixed point with a negative slope,
as also occurs for the momentary I-V curve for 10 ms in the case of the coupled pair. In these 2 cases, the fixed point
voltages are 056.6 and 056.1 mV, respectively.

case of the average cell (Fig. 7C) , or the coupled pair of et al. 1989), the IO complex (Llinás and Yarom 1986a),
etc. Theoretical studies show that electrical coupling cancells (Fig. 7D) , there exists a period of time in which the

momentary V -I curve has a negative slope at the fixed point modulate the frequency of the oscillations, either reducing
or increasing it (Abbott et al. 1991; Kepler et al. 1990;(Fig. 7C, 3 and 10 ms; Fig. 7D, 10 ms). Thus, during

this brief time window, a small depolarization generates an Meunier 1992). Other studies show, counterintuitively, that
weak coupling can produce antiphase synchronization withinward current (and a small hyperpolarization generates an

outward current) . If this current is sufficiently large and oscillatory, or even nonoscillatory, neurons (Sherman and
Rinzel 1992), or that mutual inhibition can lead to synchronylong lasting to produce a substantial voltage change, the

membrane potential ( in the nonclamped situation) will be when the postsynaptic conductance decays slowly (Wang
and Rinzel 1992). Coupling of nonlinear elements yieldsdriven away from the fixed point. A large inactivation time

constant (th) ensures that the destabilizing current will not complex dynamics, and there are many gaps in our levels
of understanding. The complexity and richness of behaviorsbe short lived. In such a case, the resting potential of cell 2

is not stable. Because of the electrical coupling, it entrains are sources of flexibility and plasticity, properties that have
major importance in nervous systems.cell 1 to oscillate with it.

The present work was inspired by observed behaviors in
the IO complex, which is composed of neurons that oscillateD I S C U S S I O N
in a subthreshold range (Benardo and Foster 1986; Llinás
and Yarom 1986a) and that are extensively coupled electri-Understanding the relative contributions of coupling and
cally (de Zeeuw et al. 1990; Sotelo et al. 1974). The electri-intrinsic properties to rhythmogenesis in networks of excit-
cal coupling between IO neurons is not only important forable cells requires combined modeling and experimental ef-
synchronization (Llinás and Sasaki 1989; Sasaki et al.forts. Some insights into how network oscillations are estab-
1989), but probably plays a key role in the generation oflished and coordinated are being provided by case studies
the sustained oscillatory behavior of the neurons (Bleaselof a variety of systems, such as the pancreatic b-cells (Meda
and Pettigrew 1992, 1994; Yarom 1989, 1991). Several lineset al. 1984), the pyloric network of the stomatogastric gan-
of evidence suggest that the IO neurons, at least most ofglion in crustacea (Hooper and Marder 1987), the central
them, are not intrinsic oscillators. Their dynamic behaviorpattern generator of a swimming lamprey (Grillner and Mat-

sushima 1991), the locus coerulus in neonatal rats (Christie is better described as that of damped oscillators. Electrical
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coupling per se cannot mediate sustained synchronous oscil- stration of resonance in the IO neurons (Lampl and Yarom
1996), further support the existence of a calcium windowlations among such units, if they are completely identical.

However, IO cells exhibit a significant variability in input conductance in the IO neurons. Fourth, the time scale of
IT’s inactivation gating is absolutely critical in determiningresistance, resting potential, membrane time constant, mag-

nitude of calcium current, and resonant frequency (Lampl stability of the rest state. Although the window conductance
is essential, it is a steady-state property and its existenceand Yarom 1997; Manor 1995). Heterogeneity in ion chan-

nel densities may contribute to these variabilities. We hereby does not guarantee an oscillation. The inactivation must be
slow enough relative to the destabilizing time scale of thesuggest that this heterogeneity may have functional impor-

tance for the generation of spontaneous oscillations. Hetero- negative resistance.
Our model, which is partly motivated by observed param-geneity in channel densities among classes of neurons is

frequently observed in other preparations (Benitah et al. eter variability in slice preparations, suggests that there are
at least four different behavioral types of IO neurons. Not1993; Christ et al. 1993; Hájos and Greenfield 1993). Theo-

retical models of networks of excitable cells showed that all these different types have been identified in experiments.
Rather, with the exception of spontaneously oscillating neu-such heterogeneities may play a functional role (Smolen et

al. 1993). The extensive electrical coupling and the large rons found in 10% of the slices (Llinás and Yarom 1986a),
most intracellular recordings from slices showed stable qui-electrical variability observed in the IO inspire the question:

can rhythmogenesis be expected from electrical coupling of escent behavior with damped oscillatory transients. These
experimental findings, however, do not preclude the possibil-neurons with different channel densities, even if none, or

just a few, of the individual cells are SOs? Before answering ity that the other types exist in the population of IO neurons.
One expects that behavioral properties of the individual neu-this question, we describe the behaviors that should be ex-

pected from an isolated IO cell as a function of its channel rons are ‘‘blurred’’ because of electrical coupling with their
neighbors, as we have found in a large network model (un-densities.

We used a biophysically based minimal cell model with published results) . Our classification as described in Fig. 2
may only be feasibly attempted experimentally after a highlyonly two conductances (g

V T , gL) to map out these behaviors.
This simplification of the IO neuron was motivated by the specific blocking agent for gap junctions becomes available.

The experimental finding that most stable IO neurons gener-experimental findings that neither potassium nor sodium nor
high-threshold calcium channels are required for the exis- ate damped oscillations after brief intracellular current injec-

tion is supported by our simulations with the two-neurontence of the STO (Benardo and Foster 1986; Lampl 1994;
Llinás and Yarom 1986a). We found that differences in model (cf. Fig. 4) and with large networks (unpublished

data) .channel densities yield a spectrum of behaviors that can be
categorized into several distinct types of response to current From the above characterizations we learned that, for most

values of the channel densities in Fig. 2, the individual modelinjection (Fig. 2) . We characterized four such major behav-
iors: stable cells, SOs, COs (which require current injection neurons are not spontaneously oscillating. Our results show,

however, that coupling two quiescent cells can lead to a pairto oscillate) , and conditional bistable cells. The channel den-
sities (and gating properties of the T-type calcium current) showing spontaneous oscillations. This occurs, for proper

coupling ranges, if the individual neurons have differentinteract to significantly affect the neuron’s ‘‘excitability.’’
First, the leak conductance is the major determinant of the channel densities whose values straddle the SO zone in Fig.

2 and whose average values lie in or above this region.input resistance. In this sense, it acts as a stabilizing parame-
ter: the larger it is, the smaller and ‘‘more passive’’ are the The electrotonic coupling (if not weak) creates a two-cell

network that displays a behavioral pattern different from thatcell’s responses to input or intrinsic currents. Second, the
relative values of the leak conductance and the maximal of the individual cells. The source of this new, emergent

behavior lies in the nonlinear effect of the equilibrium poten-calcium conductance determine the resting membrane poten-
tial. In our case, where the calcium current has some window tial of each separate cell on the calcium conductance. For

example, consider the case of two neurons, one with a restingconductance, the value of the membrane potential relative
to the window conductance region determines the excitabil- potential that is more hyperpolarized and the other that is

more depolarized compared with the voltage range whereity of the cell in a dramatic way. For example, instability
may occur only when the resting potential is in a range the window conductance exists. Both neurons are stable,

but their electrical coupling can shift their voltages into thewhere the short-time transient slope conductance is negative.
Such a condition may exist only if the voltage-dependent window conductance regime, where their calcium conduc-

tances are open and may destabilize the pair. Another sur-conductance is partially open at rest and not completely
inactivated, i.e., if the resting membrane potential is within prising example is the behavior of a pair of neurons com-

posed of a conditional bistable neuron coupled to a stablethe window conductance range. Third, changes in the maxi-
mal calcium conductance modify the relative importance neuron. Neither of the two neurons is capable of generating a

periodic behavior with any current injection. Yet, electronicof the window conductance. Thus it acts as a destabilizing
parameter ( in the range of voltages of the window conduc- coupling with the appropriate coupling strength may yield

sustained oscillations in the two-neuron network (Fig. 4E) .tance) . Note that the extracted kinetics of the low-threshold
calcium current from IO neurons (Fig. 1A) suggest that a Our analytic perturbation theory for the case of strong cou-

pling has shown us that the electronic coupling current iswindow conductance does exist. Moreover, the dependence
of resonance (existence of a range of input frequencies, the mediating mechanism for new behaviors when the cells

are not identical. Even in the limit of infinite coupling, thiswhere the voltage response is maximal) on a calcium win-
dow conductance (Hutcheon et al. 1994), and the demon- current is sizable although the cell voltages are nearly identi-
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cal. The coupling current makes up the difference in the electrical behavior of isolated cells and electrically coupled
neurons. We have shown that heterogeneity in channel den-two cells’ ionic currents caused by their different channel

densities. sity, integrated through electrical coupling, can result in a
rich repertoire of electrical activity in the subthreshold re-The idea that electrical coupling can contribute to rhythm-

ogenesis in a heterogeneous population was previously sug- gime. By virtue of electrical coupling, oscillatory behaviors
can emerge from cells that are silent otherwise. Indeed, beinggested for bursting pancreatic b-cells. Smolen et al. (1993)

postulated that bursting oscillations could arise by parameter alone can be very different from being coupled.
averaging among electrically coupled quiescent and continu-
ously spiking cells. Our analytic result (cf. APPENDIX B) A P P E N D I X A : S E G M E N T A T I O N O F T H E g

V T - g L S P A C E
shows that averaging is the rhythmogenic mechanism in the I N T O B E H A V I O R A L ‘ ‘ Z O N E S ’ ’
case of strong coupling. This result is general. Any pair of

In this section we briefly describe the methods that we used tononidentical cells that can be modeled as in Eq. 21 (even if
identify the regions in the g

V T-gL plane that correspond to stablethere are more ionic currents and gating variables) will oscil-
cells, SOs, COs, and conditional bistable cells.late for sufficiently large gcoup if the average cell oscillates

First we explain how the SO zone (the wedge-shaped region inspontaneously. The result is restricted in that we consider
Fig. 2) is found. With gL fixed, with the use of AUTO we computeheterogeneity only in the Iion expressions, thus allowing dif- the steady-state and periodic solutions as functions of the parameter

ferences in the channel densities and reversal potentials but g
V T; the results are presented in the bifurcation diagram of Fig. 8A.

not in gating or other kinetics. In contrast to the study by We start with g
V T Å 0, where the steady state is VV Å VL , hV Å

Smolen et al. (1993), where variability was described in h`(VL) . AUTO computes the steady-state solution(s) by varying
terms of an individual cell’s spontaneous activity, our cate- g

V T continuously over a preset range. It determines the solution’s
stability (stable plotted as solid line, unstable as dotted line) bygorization is based on how intrinsic parameters change the
inspecting the real parts of the eigenvalues. The transition pointscell’s stimulus-response properties for current injection. That
(between stable and unstable) are identified as HB1 and HB2.is, Fig. 2 distinguishes behavior for ranges of three, not
These are points from which periodic solutions of small amplitudejust two, parameters—the two channel densities and the
emerge. In a second pass, AUTO can start from either of thesestimulating current. Although in both studies oscillations
points and compute the limit cycle solution as g

V T is varied untilcould sometimes arise even if the mean parameters fell out- the other HB point is reached. Next, to get the ‘‘wedge,’’ we use
side the SO zone, our rule of thumb describes the conditions AUTO’s two-parameter continuation feature. This allows us to
under which this could happen (for our model) . Whether track the two HB points as both g

V T and gL are allowed to change
this aspect generalizes, we do not yet know. (Fig. 2B) . A cell with (g

V T , gL) lying in the wedge has an unstable
From our work showing that heterogeneity in channel steady state and oscillates spontaneously. We remark that in some

small parameter ranges we found that an HB might be subcritical,densities may generate new behaviors via coupling of the
i.e., the emergent branch of limit cycles locally enters the regimeneurons and from the study by Smolen et al. (1993), we
where the steady state is stable before bending back into and tra-expect that other types of variabilities might yield similar
versing the wedge.results. Differences in kinetics of the voltage-dependent con-

The next stage is to define the zones for a stable cell, a CO, andductance (Berlind 1993) or in local concentrations of extra-
a bistable cell. For a specific leak conductance (gL) , we start withcellular potassium (Guckenheimer and Labouriau 1993) are a cell for which the ratio g

V T/gL is large. Such a cell will have an
likely to produce different neural behaviors. These differ- N-shaped steady-state I-V relation, and perhaps be bistable, having
ences, via coupling, can also support network behaviors that two stable steady states for a range of currents. With AUTO, we
are not expected from the response of its individual elements. compute the one-parameter bifurcation diagram: steady-state and
Differences in cell sizes may also produce new behaviors periodic solutions as a function of Iapp (Fig. 9A) . Note that in this

case the HBs are subcritical and the periodic solutions are unstable.via coupling.
In addition to the HB point(s) (1 or 2), AUTO identifies the twoOur study of heterogeneity and electrical coupling with
limit points LP1 and LP2 (where the steady-state solution plot hasthe two-neuron model paves the way for a more detailed
vertical slope). Now, with two-parameter continuation in AUTO,investigation and model of the olivary nucleus. The model
we trace these points as both Iapp and g

V T are allowed to changewe present obviously has some limitations and should not
(Fig. 9B) . The curve of HB points is plotted as a solid line; thebe applied to address certain issues. For example, because curve of limit points is shown as a dashed line. Note that, by

only two neurons are coupled together, intracellular injection definition, the voltages at which HB1 and LP1 occur are lower than
of current to one of the cells can generate STOs, change those at which HB2 and LP2 occur, respectively.
their frequency, or abolish them. In experiments, the STOs We define four critical values of g

V T: the value where the two
are insensitive to current injection in a single cell. The basic HB points coalesce g0 ; the two values g1 , g2 where the HB curve

crosses the axis Iapp Å 0; and where the HB2 and HB1 curvescomponents of our model, when incorporated into a large
coalesce, g3 . Note, the values g1 , g2 will not exist if the HB loopnetwork, lead to behaviors that do match with such experi-
lies strictly in the region Iapp õ 0, i.e., if the SO zone in Fig. 2 liesmental observations. For example, the frequency of STOs
above the horizontal level for the specified gL value. With the usein different slices is variable, between 3 and 10 Hz; this
of these critical values we classify cells with this gL value in fourfrequency range is seen in simulations with multicellular
different categories.network models, where a moderate number of heterogeneous 1) By the definition of g0 , at any g

V T smaller than g0 there are
cells were used (unpublished results) . Here, we have devel- no bifurcation points at any injected current. Thus the steady-state
oped the framework for this, addressing the next set of ques- solution is unique and always stable, for any Iapp . Thus the range
tions concerning multicellular behavior in the IO nucleus. g

V T õ g0 defines the stable neurons.
From a generalist’s point of view, our simplified model 2) When g1 ° g

V T ° g2 , the fixed point is unstable and the cell
oscillates with no current; this defines the SOs.of the IO provides additional insights into the emergence of
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the g
V T axis, when g0 õ g

V T õ g3) , bistability cannot occur because
I(VHB2) ú I(VHB1) . g2 marks the lowest value of g

V T for which both
HB points occur for negative current. Thus these cells that oscillate
only in a negative range of currents are called COs.

4) The merging of HB1 and HB2 at g3 marks the lowest g
V T value

for which I(VHB2) ° I(VHB1) . Thus, for g
V T ¢ g3 , there is a range

of negative currents at which two stable steady-state solutions exist.
These are the conditional bistable cells.

These previous steps are repeated for different values of gL . The
g0 values found for different gLs define the border of the ST regime.
Note that when g0 is plotted as a function of gL , it defines the
boundary between the ST zone and the CO zone in Fig. 2. It can
also be seen that g1 and g2 as functions of gL define the left and
right boundaries, respectively, of the SO wedge in Fig. 2. The g3

values found for different gLs mark the border segregating bistable
cells from other cells in the g

V T-gL space. Between g0 and g3 , for a
given gL , are located the oscillators, spontaneous and conditional.
Their distinction arises after we plot g1 and g2 .

There might be some small overlaps between regions (or cases
that are mixed) whose consideration would require more precise
and complicated mathematical considerations than are worthwhile
for our purposes. For example, a mixed case could be imagined
as a distortion of Fig. 9A in which the unstable periodic branch
from HB2 might start as shown and then stabilize by bending back
to more negative Iapp ; this cell would have for some small range
of Iapp a stable steady state (with V around 070 mV) coexisting
with a stable limit cycle (with average V around 050 mV).

A P P E N D I X B : A P P R O X I M A T I O N O F T H E C O U P L I N G

C U R R E N T I N T H E C A S E O F S T R O N G C O U P L I N G

W I T H P E R T U R B A T I O N A N A L Y S I S T E C H N I Q U E S

We are interested in obtaining an approximation for the coupling
current when the coupling conductance is strong (or, equivalently,
when the coupling resistance is small) . To do that, we ask how
the solution is determined when the coupling resistance (the param-
eter) is slightly altered from zero. This type of analysis can be
carried out with perturbation techniques. According to these tech-
niques, the solution can be approximated by the first few terms of
an asymptotic expansion, which is done in terms of the small
parameter. Usually, the use of the first two terms gives an accept-
able approximation.

In a proper perturbation treatment, the variables are first written
in dimensionless form. This allows one to expose the small parame-
ter that is to be used in the perturbation series. For the nondimen-
sionalization, gL , for example, could be defined as the reference
conductance, gref . Then, the current balance equation (Eq. 15) is
divided by gref and Iion is redefined as

iion Å Iion /gref

The reference time constant is defined as

FIG. 8. Computation of the SO zone. A : voltage amplitude of the steady tref Å Cm/gref
response shown as a function of the calcium conductance (gV T ) (obtained
by one-parameter continuation with AUTO). Leak conductance is gL Å 0.3 The small parameter is then
mS/cm2. Solid and dotted lines: stable and unstable solutions, respectively.

e Å gref /gcoupAt gV T Å 0.637 mS/cm2 and gV T Å 0.936 mS/cm2, 2 HBs occur (labeled
HB1 and HB2). B : 2 HBs were traced (with an AUTO 2-parameter continua-

Similarly, t is scaled relative to tref , and is nowtion as both gV T and gL are allowed to change) and shown to be 2 branches
of a continuous curve. At each gL value, the gV T values on the HB1 and HB2 t * Å t /trefbranches define the calcium conductance range at which the cell is oscillat-
ing spontaneously. Note that with gL õ 0.096 mS/cm2 or gV T õ 0.237 mS/ For each of the two cells j ,i Å 1,2, the current balance equation
cm2, a cell cannot oscillate spontaneously.

is now

In general, there will be a small regime where g0 ° g
V T õ g1 , dV j

dt *
Å 0iion, j(V j , h j) /

1
e

(Vi 0 V j) (27)which corresponds to a sliver in the g
V T-gL plane between the ST

zone and the SO wedge.
3) When g2 õ g

V T õ g3 (or, in case the HB loop does not cross For convenience, the gating equations (Eq. 5) are written as
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dh j

dt *
Å H(V j , h j) (28)

To obtain an approximate representation when e is small ( i.e.,
when the coupling conductance is strong), the voltages of the two
cells are written as a perturbation series in powers of e

V j( t *) Å £j ,0 ( t *) / e£j ,1 ( t *) / e 2
£j,2 ( t *) / rrr (29)

where the (time-varying) coefficients £j,0 , £j,1 ,rrr remain to be
found.

In problems that involve nonlinear oscillations, truncated expan-
sions to the above form that do not account for the effect of e on
the period are valid only for a finite time; this is because resonant
behavior eventually leads to growth of the coefficient terms. In the
Lindstedt-Poincaré method, these resonant behaviors are controlled
by allowing the unknown frequency of the oscillations, v1 , to also
depend on e (Nayfeh 1973). Thus this frequency is also expanded
in series form

v Å v0 / ev1 / e 2v2 / rrr (30)

where v0 , v1 , etc. are to be determined. To introduce v into the
problem, t* is scaled by v so we obtain a new time variable

s Å vt *

The differential equations of our problem now take the form

v
dV j

ds
Å 0iion, j(V j , h j) /

1
e

(Vi 0 V j) (31)

and

v
dh j

ds
Å H(V j , h j) (32)

For convenience, we define the following expressions

s Å V2 / V1

2
d Å V2 0 V1

2

sI Å
h2 / h1

2
dH Å h2 0 h1

2

Now, the system of equations defined in Eq. 31 and 32 is rewritten
by adding and subtracting the differential equations for the volt-
ages, and doing the same for the gating variables. After dividing
by 2, we get

v
ds
ds
Å 01

2[ iion,1 (s 0 d, sI 0 dH ) / iion,2 (s / d, sI / dH )] (33)

ve
dd
ds
Å 1

2er[ iion,1 (s0 d, sI 0 dH )0 iion,2 (s/ d, sI / dH )]0 2d (34)

v
dsI
ds
Å 1

2[H(s / d, sI / dH ) / H(s 0 d, sI 0 dH )] (35)

v
ddH

ds
Å 1

2[H(s / d, sI / dH ) 0 H(s 0 d, sI 0 dH )] (36)

FIG. 9. Method of classifying cell response types for a given gL . The
g2 are the two g

V T values at which the HB curve crosses Iapp Å 0 (0.6378gL value in this example (A and B) is 0.3 mS/cm2. A : steady-state solu-
and 0.936 mS/cm2, respectively) . g3 is the g

V T value at which the two HBstion(s) of the voltage shown as a function of Iapp (AUTO computation).
intersect, i.e., the lowest g

V T for which the current at HB1 is more positiveIn this case, g
V T Å 2 mS/cm2. Thick dashed lines: maxima and minima of

than the current at HB2 (1.811 mS/cm2). Cells with g
V T õ g0 are stableunstable limit cycle solutions. Thin solid and dotted lines: stable and unsta-

(arrow at right) . The range of values g0 õ g
V T õ g1 correspond to cells thatble fixed point solutions. By definition, the voltage at HB1 is lower than

oscillate with injection of positive current only. In this figure, this range isthat at HB2. The same applies for LP1 and LP2. For 01.491 mA/cm2 °
very narrow and practically undetectable. When g1 õ g

V T õ g2 , the cell isIapp ° 01.286 mA/cm2 (between HB1 and HB2), two stable fixed point
oscillating with no injection of current (SO). Cells with g2 õ g

V T õ g3 aresolutions coexist. B : two HBs and the two LPs were traced with an AUTO
oscillating in a negative range of currents and are thus called conditionalcontinuation of two parameters (both Iapp and g

V T are allowed to change).
oscillators. Finally, cells with g

V T ú g3 are ‘‘bistable.’’g0 is the g
V T value at which the two HBs coalesce (0.636 mS/cm2). g1 and
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From Eq. 29 By definition, Icoup Å 2d /e Å 2(d1 / ed2 / rrr) . Thus with
e Å 0

s(s) Å s0(s) / es1(s) / e 2s2(s) / rrr (37)
Icoup É 2d1 Å IH coup

Similarly, d, s̃, and d̃ are expressed as series representations. These
series representations, together with Eq. 30, are inserted into Eq. In other words, the coupling current needed to equalize the volt-

ages of the two cells is simply proportional to the difference in33–36. For example, for Eq. 33
their ionic currents.

The other unknown first-order terms (s1 , s̃1 , and d̃1) can be(v0 / ev1 / rrr)S ds0

ds
/ e

ds1

ds
/ rrrD

obtained by expanding the nonlinear terms in powers of e. Note
that in solving for these terms it is absolutely necessary that we

Å 00.5{ iion,1[s0 0 d0 / e(s1 0 d1) / rrr, have introduced the frequency into the perturbation series, to pre-
vent these terms from growing unbounded in time.

sI 0 0 dH 0 / e(sI 1 0 dH 1) / rrr]

/ iion,2 [s0 / d0 / e(s1 / d1) / rrr, The authors thank V. Booth, B. Ermentrout, D. Hansel, D. Golomb, I.
Lampl, and A. Sherman for helpful discussions and fruitful remarks.

sI 0 / dH 0 / e(sI 1 / dH 1) / rrr]} (38) This work was supported by U.S. Office of Naval Research Grant
N00014-19-J-1350 and by the United States–Israel Binational Science

The next step is to find the lowest-order terms (s0 , d0 , etc.) . By Foundation (Y. Yarom).
setting e Å 0 in Eq. 34, we get Address for reprint requests: Y. Manor, Volen Center for Complex Sys-

tems, Brandeis University, 415 South St., Waltham, MA 02254.
d0 Å 0 (39)
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This means that at the lowest order, the two voltages are identical.
We denote this coequal voltage as £av(s)
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