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Layers of neurons that are sparsely connected
to each other in a feedforward manner may be
the most rudimentary platform for thinking
about how the brain extracts important fea-
tures from sensory input. Neurons in the input
layer fire action potentials in response to sen-
sory input, and then the input is progressively
processed at successive, deeper, layers. Is there a
‘natural’ firing mode in deep layers? Are action
potential rates sustained throughout the net-
work, or do neurons start to fire in bursts1 or in
synchrony with other neurons2,3? An answer to
these fundamental questions would shed light
on how the brain codes sensory information.

Until the Reyes study4 in this issue,
exploration of this question relied on mod-
eling studies, which yielded contradictory
results5–8. Recordings from single neurons
in large networks are not yet possible, but
here—by wedding the computer to the
neuron—Reyes4 devised a clever and sim-
ple recipe for constructing a feedforward
system, consisting of several thousands of
neurons, from real cortical neurons.

Using layer-5 pyramidal neurons in brain
slices from the somatosensory cortex of rats,
and a computer, Reyes constructed networks
containing ten layers each with several hun-
dred neurons (Fig. 1a). The computer’s task
was twofold. First, it transformed each train of
action potentials from the simulated input
layer into a transient postsynaptic current
(PSC) of a chosen size, time course and sign
(simulating excitatory or inhibitory postsy-
naptic currents). Second, it summed all PSCs
generated by many trains of action potentials
(representing many presynaptic inputs in layer
n converging onto a single neuron in layer 

n + 1) and injected the summed current intra-
cellularly into the recorded neuron’s soma. The
neuron responded by producing a train of
action potentials. This output train repre-
sented one neuron in layer n + 1. This process
was then iterated (Fig. 1a).

With this innovative experimental design,
Reyes was able to manipulate the connection
probability between layers and the number of
neurons in each layer (about 1,000 iterations or
neurons per hour is feasible). He used dynamic
clamp to simulate the transient conductance
changes caused by excitatory or inhibitory
synaptic input, add background noise or make
the network heterogeneous by recording
simultaneously from a few neurons with dif-
ferent firing characteristics. The general find-
ing was that neurons in the deeper layers
inherently fire in a tight, spike-to-spike syn-
chrony with each other, even when one tries
hard to manipulate the system to ‘spoil’ syn-
chrony. Synchronous firing in many neurons at
a given layer can be seen already after the first
few layers, and this synchronous firing devel-
ops rather rapidly (within 100 ms; Fig. 1b).

Reyes’ findings support the notion that for
fast computation, feedforward cortical net-
works may use a ‘temporal code’ in which at
any given time neurons that fire simultane-
ously form a functional group representing a
specific input feature2.

Why is synchrony is so persistent, and so
stubborn, in feedforward networks? The main
reason is the overpowering effect of the com-
mon inputs that impinge on different neurons
belonging to a given layer. For networks of
finite size, if each neuron receives multiple
synaptic inputs from, say, 10% of the neurons
in the previous layer, then neurons in any given
layer will share about 1% of the same synaptic
inputs. The larger the connection probability,
the larger the probability for common inputs.
When activated, this common input tends to
fire action potentials in a restricted time win-

dow, yielding partial synchrony between the
corresponding postsynaptic neurons. In the
next layer downstream, neurons will tend to
‘pick up’ synchronous firing in their common
inputs and, consequently, they will tend to fire
even more synchronously. Synchrony is there-
fore expected to become more precise (and
with more neurons recruited to this so-called
‘syn-fire’ chain) in progressively deeper layers.
Indeed, Reyes showed that, under a variety of
conditions, the firing of neurons was asynchro-
nous for the first 2–3 layers, but became gradu-
ally more synchronous in successive layers, even
with strong uncorrelated background noise.

An important issue that has yet to be studied
is how the specific biophysical properties of
cortical neurons, in particular their voltage-
and time-dependent membrane conduc-
tances, contribute to the emergence of syn-
chrony. It seems that synchrony in vitro is
considerably more resistant to uncorrelated
background noise than is synchrony in models
of feedforward networks, which typically uses
leaky ‘integrate-and-fire’ (LIF) neuron models
that do not incorporate the full-range of mem-
brane dynamics. Modeling studies show that,
due to the difference in voltage buildup toward
threshold for action potential firing, the syn-
chronization properties in networks composed
of conductance-based neurons compared to
LIF networks are fundamentally different. The
development of synchrony is more robust to
noise in networks with conductance-based
neurons9.Yet it is not clear exactly which of the
nonlinear currents embedded in the mem-
brane of cortical neurons is responsible for the
robustness of synchrony or what biophysical
mechanism underlies this robustness.

Another issue yet to be explored is the effect
of dendritic, rather than somatic, inputs on net-
work synchrony. By injecting current into the
neuron soma, the consequence of signal delay in
dendrites10 and nonlinear dendritic dynamics
(which strongly affect the pattern firing in the
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Action potential propagation has been studied extensively in model networks. Now a new paper describes an innovative method
of combining neuronal recordings with real-time neuronal modeling to create multi-layer feedforward networks. Neurons in deep
layers tend to fire in synchrony, suggesting such networks may code sensory information by groups of neurons that fire together.
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Some of the most complex animal behav-
ior is so commonplace that it escapes our
attention. For example, seeking, detecting,

approaching and landing on a piece of
fallen fruit is a seemingly simple task for a
fruit fly, yet it requires that the animal
track a fragmented odor plume through a
changing and varied landscape. Eventually,
the fly must orient toward some conspicu-
ous visual feature that might represent the
source of the attractive odor. Does this
behavior reflect a confluence of sensori-

motor reflexes, or do higher centers of the
brain decide that a smelly blob is suffi-
ciently conspicuous to warrant further
investigation? More generally, how do
brains distinguish environmental features
worthy of selective attention?

In this issue, van Swinderen and
Greenspan1 identify neural activity that
may be associated with perception in the

The authors are in the Department of Bioengineering,

California Institute of Technology, 1200 E. California

Blvd., Pasadena, California 91125, USA.

e-mail: markfrye@socrates.berkeley.edu

A signature of salience in the Drosophila brain
Mark A Frye & Michael H Dickinson

Electrophysiological recordings coupled with genetic manipulations in fruit flies reveal activity patterns in the brain associated
with the conspicuousness of visual objects, providing an elusive physiological link between gene products and behavior.
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axon11,12) are ignored. This could be partially
circumvented by impaling the cortical neuron
with two or even three electrodes in soma and
dendrites13,14.Two dendritic electrodes could be
used to mimic multiple inputs into the neuron
while the somatic electrode could be used to
monitor the resultant firing as above. How
would these multiple dendritic inputs be repre-
sented through the feedforward network?

Clearly, the most demanding assignment for
the novel method presented here is to mimic
real cortical networks that are dominated by
recurrent connections. In this case, the firing of
the neuron should be updated in real time in
response to the activity arising from the feed-
back connections. One may push the method
to start doing this by simultaneously recording
from several synaptically connected neurons
(preferably from different cortical layers)
and/or by using the dynamic-clamp method to

effectively connect the neurons to each other
(electrically, via the respective intracellular
electrodes). A small recurrent network created
in this way can then serve as a building block
for larger networks using the iterative method
described above. Theoretical studies15 of the
behavior of such networks—with balanced
excitatory and inhibitory activity—predict
chaotic dynamics and linear responses to input
rates; this could then be examined directly.

So we should celebrate this innovative mar-
riage between real neurons and the computer. It
enables one to construct semi-realistic cortical
networks of different size and architecture. The
computer traces down how action potentials
are transmitted and processed through cortical
networks with thousands of neurons; the neu-
rons, in turn, help us to understand how signal
processing in cortical networks depends on the
synaptic and membrane properties of single

neurons. This fruitful collaboration between
the neuron and the computer will shed light on
how cortical circuits encode (rate-wise, tempo-
ral-wise or otherwise) the world around us.
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Figure 1 Making a sparsely connected multi-layer
feedforward network using a single cortical neuron
and a computer. (a) Each action potential (AP)
from the red trains in the simulated ‘input’ layer 1
is transformed, by the computer, to a transient
postsynaptic current (PSC). The summed PSCs
are injected intracellularly to a real neuron. The
resultant AP train represents the firing of one
neuron in layer 2. Another set of trains is
randomly chosen from layer 1 (green traces); the
new output train represents a second neuron in
layer 2. The set of AP trains representing layer 2
are, in turn, used to construct the activities of 
layer-3 neurons, and so forth. (b) Fast and robust
synchrony develops in deep layers.
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