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SUMMARY
Utilizing recent advances in machine learning, we introduce a systematic approach to characterize
neurons’ input/output (I/O) mapping complexity. Deep neural networks (DNNs) were trained to faithfully
replicate the I/O function of various biophysical models of cortical neurons at millisecond (spiking) resolu-
tion. A temporally convolutional DNN with five to eight layers was required to capture the I/O mapping of a
realistic model of a layer 5 cortical pyramidal cell (L5PC). This DNN generalized well when presented with
inputs widely outside the training distribution. When NMDA receptors were removed, a much simpler
network (fully connected neural network with one hidden layer) was sufficient to fit the model. Analysis
of the DNNs’ weight matrices revealed that synaptic integration in dendritic branches could be conceptu-
alized as pattern matching from a set of spatiotemporal templates. This study provides a unified character-
ization of the computational complexity of single neurons and suggests that cortical networks therefore
have a unique architecture, potentially supporting their computational power.
INTRODUCTION

Neurons are the computational building blocks of the brain. Un-

derstanding their input/output (I/O) transformation has therefore

been a major quest in neuroscience since Ramon y Cajal’s

‘‘neuron doctrine.’’ With the recent development of sophisti-

cated genetic, optical, and electrical techniques, it has become

clear that many key neuronal types (e.g., cortical and hippocam-

pal pyramidal neurons, cerebellar Purkinje cells) are highly

complicated I/O information processing devices. They receive

a barrage of thousands of synaptic inputs via their elaborated

dendritic branches; these inputs interact with a plethora of local

nonlinear regenerative processes, including the back-propa-

gating (Na+-dependent) action potential (Stuart and Sakmann,

1994), the multiple local dendritic NMDA-dependent spikes

(Schiller et al., 2000; Polsky et al., 2004; Branco et al., 2010;

Kastellakis et al., 2015), and the large and prolonged Ca2+ spike

at the apical dendrite of layer 5 (L5) cortical pyramidal neurons

(Schiller et al., 1997; Larkum et al., 1999). The input synapses

interact with these local nonlinear dendritic properties to eventu-

ally generate a train of output spikes in the neuron’s axon,

carrying information that is communicated, via synapses, to

thousands of other (postsynaptic) neurons. Indeed, as a conse-

quence of their inherent nonlinear mechanisms, neurons can

implement highly complicated I/O functions (Bar-Ilan et al.,

2013; Behabadi and Mel, 2014; Cazé et al., 2013; Doron et al.,

2017; H€ausser and Mel, 2003; Hawkins and Ahmad, 2016;

Katz et al., 2009; Koch and Segev, 2014; Koch et al., 1982; Lon-

don and H€ausser, 2005; Mel, 1992; Moldwin and Segev, 2018;
Poirazi et al., 2003b, 2003a; Shepherd et al., 1985; Tzilivaki

et al., 2019; Zador et al., 1991; see recent work on nonlinear den-

dritic computations in human cortical neurons in Gidon

et al., 2020).

A classical approach to study the I/O relationship of neurons is

to construct a simplified model that omits many of their detailed

biological mechanisms. These models present a highly reduced

phenomenological abstraction of the neuron’s I/O characteris-

tics (Lapicque, 1907; McCulloch and Pitts, 1943). One such

abstraction is the ‘‘perceptron’’ (Rosenblatt, 1958), which lies

at the heart of some of the most advanced pattern recognition

techniques to date (LeCun et al., 2015). However, the percep-

tron’s basic function, a linear summation of its inputs and thresh-

olding for output generation, ignores the nonlinear synaptic inte-

gration processes and the temporal characteristics of the output,

which take place in real neurons. Some more recent modeling

studies have addressed this gap (G€utig and Sompolinsky,

2006; Poirazi et al., 2003a; Polsky et al., 2004; Ujfalussy et al.,

2018) but have either not considered fully diverse synaptic inputs

distributed over the full nonlinear dendritic tree or did not aim to

capture the I/O transformation of neurons at a millisecond tem-

poral precision of output spikes. Attempts to predict the spiking

activity of neurons in response to somatic input current/conduc-

tance, rather than dendritic synaptic input, can be found in Joli-

vet et al. (2008) and Naud et al. (2014), and attempts to predict

the spiking activity of neurons in response to natural images

can be found in Cadena et al. (2019) and Keat et al. (2001).

Another common approach to study the I/O characteristics of

neurons is to simulate, via a set of partial differential equations,
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the fine electrical and anatomical details of the neurons using the

cable and compartmental modeling methods introduced by Rall

(Rall, 1959, 1964; Segev and Rall, 1988). Using thesemodels, it is

possible to account for nearly all of the above experimental phe-

nomena and explore conditions that are not accessible with cur-

rent experimental techniques. While this is the only method to

date to account for the full I/O transformation in a neuron, this

success comes at a price. Compartmental and cable models

are composed of a high-dimensional system of coupled

nonlinear differential equations, which is notoriously challenging

to understand (Strogatz, 2001). Specifically, it is a daunting task

to extract general principles that govern the transformation of

thousands of synaptic inputs to a train of spike output at milli-

second precision from such detailed simulations (but see Amsa-

lem et al., 2020; Larkum et al., 2009; Magee and Johnston, 1995;

Rapp et al., 1992; Schiller et al., 2000; Spruston et al., 1995; Stu-

art and Sakmann, 1994; Stuart et al., 1997; Wybo et al., 2021).

Here, we propose a novel approach to study the neuron as a

sophisticated I/O information processing unit by utilizing recent

advances in the field of machine learning. Specifically, we ex-

ploited the capability of deep neural networks (DNNs) to learn

very complex I/O mappings (Holden et al., 2019; Kasim et al.,

2020; Senior et al., 2020), in this case, that of neurons. Toward

this end, we trained DNNswith rich spatial and temporal synaptic

input patterns to mimic the I/O behavior of a L5 cortical pyrami-

dal neuronmodel with its full complexity, including its elaborated

dendritic morphology, the highly nonlinear local dendritic mem-

brane properties, and a large number of excitatory and inhibitory

inputs that bombard the neuron. Consequently, we obtained a

highly computationally efficient DNN model that faithfully pre-

dicted this neuron’s output at millisecond (spiking) temporal res-

olution. We then analyzed the weight matrices of the DNN to gain

insights into the mechanisms that shape the I/O function of

cortical neurons. By systematically varying the DNN size, this

approach allowed us to characterize the functional complexity

of a single biological neuron, pin down the ion-channel-based

and morphologically based origin of this complexity, and

examine the generality of the resultant DNN to synaptic inputs

that were outside of the training set distribution. We demon-

strated that cortical pyramidal neurons, and the networks they

form, are potentially computationally much more powerful and

‘‘deeper’’ than previously assumed.

RESULTS

Analogous DNN for integrate and fire (I&F) neuron
model: Method overview and filters interpretation
Our goal is to fit the I/O relationship of a detailed biophysical

neuron model by an analogous DNN. This DNN receives, as a

training set, the identical synaptic input and the respective

axonal output of the biophysical model. By changing the

connection strengths of the DNN using a backpropagation

learning algorithm, the DNN should replicate the I/O transforma-

tion of the detailed model. To accommodate the neuron’s tem-

poral aspect, we employed temporal-convolutional networks

(TCNs) throughout the study.

Figure 1 illustrates this paradigm’s feasibility and usefulness

as a first demonstrative step, starting with the I/O transformation
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of a well-understood neuron model: the I&F neuron (Burkitt,

2006; Lapicque, 1907). This neuron receives a train of random

synaptic inputs and produces a subthreshold voltage response

as well as a spiking output (see STAR Methods). While this I/O

transformation appears to be simple, it is unclear whether it

can be learned from data by an artificial neural network using

the backpropagation algorithm at millisecond temporal resolu-

tion with a compact architecture (this indeed has not been previ-

ously demonstrated). If successful in achieving a high degree of

accuracy with a simple DNN for the I&F model, it will demon-

strate that our approach, consisting of the specificwaywe repre-

sent the neuronal I/O data and subsequent fitting of an DNN on

these data, is able to represent the functional relationship of the

I&F neuron model compactly.

What is the simplest DNN that faithfully captures the I/O prop-

erties of this most basic single-neuron model? To answer this

question, we constructed a minimal ‘‘DNN’’ consisting of one

hidden layer with a single hidden unit (Figure 1A) and verified

that it does indeed capture the complexity of this simple neuron

model (Figure 1F). The time axis was divided into 1 ms bins in

which only a single spike can occur in the I&F neuron model.

The objective of the network is to predict the binary spike output

of the I&F model at time t0, based on the preceding input spike

trains (the time-window history) up to t0. This input is represented

using a binary matrix of size Nsyn3T, where Nsyn is the number of

input synapses and T is the number of preceding time bins

considered (Figure 1B). We used Nsyn = 100, and trained a

DNN with a single hidden unit on 7,200 s of simulated data.

When using T = 80 ms, we achieved a very good fit, namely, a

simple DNN with a single hidden unit that accurately predicted

both the subthreshold voltage dynamics as well as the spike

output of the respective I&F neuron model at millisecond preci-

sion (Figure 1C).

Figure 1D depicts the weights (‘‘filters’’) of the single hidden

unit of the respective DNN as a heatmap. It shows that the

learning process automatically produced two classes of weights

(filters), one positive and one negative, corresponding to the

excitatory and inhibitory inputs impinging on the I&F model. In

agreement with our understanding of the I&F model, the excit-

atory inputs contribute positively to output spike prediction

(red), whereas the inhibitory inputs contribute negatively to it

(blue). Earlier inputs, either inhibitory or excitatory, contribute

less to this prediction (teal). Figure 1E depicts the temporal

cross-section of those filters and reveals an exponential profile

that reflects the temporal decay of postsynaptic potentials in

the I&F model (in the reverse time direction). From these filters,

one can recover the precise membrane time constant of the

I&F model. These two temporal filters (excitatory and inhibitory)

are easily interpretable, as they agree with our previous under-

standing of the temporal behavior of synaptic inputs that give

rise to an output spike in the I&F model.

Figure 1F quantifies the model performance in terms of spike

prediction using the receiver operating characteristic (ROC)

curve (Figure 1F, left; see STAR Methods) and the area under it

(area under the curve [AUC]). The AUC for the I&F case is

0.9973, indicating a very good fit. Figure 1F (right) shows an addi-

tional quantification of spike temporal precision using the DNN

prediction by plotting the cross-correlation between the



Figure 1. The integrate and fire (I&F) neuron model is faithfully captured by a NN with one hidden layer consisting of a single hidden unit

(A) Illustration of an I&F neuronmodel receiving a barrage of random synaptic inputs and generating voltage and spiking output (left) and its analogousDNN (right).

Orange, blue, and magenta represent the input layer, the hidden layer, and the DNN output, respectively.

(B) Schematic overview of our prediction approach. The objective of the DNN is to predict the spike output of the respective I&Fmodel based on its synaptic input.

The binary matrix, denoted by x, represents the input spikes in a time window T (black rectangle) preceding t0. x is multiplied by the synaptic weight matrix, w

(represented by the heatmap image), and summed up to produce the activation value of the output unit, y. This value is used to predict the output (magenta

rectangle) at t = t0. Excitatory inputs are denoted in red and inhibitory in blue. Note that unlike the I&F, the DNN has no a priori information about the type of the

synaptic inputs (excitation or inhibition).

(C) Top: example inputs (red, excitatory; blue, inhibitory) presented to the I&F neuron model. Middle: response of the I&F model (cyan) and the analogous DNN

(magenta). Bottom: zoom in on the dashed-rectangle region in the top trace. Note the great similarity between the two traces.

(D) Learned weights of the DNN modeled synapses. The top 80 rows are excitatory synapses to the I&F model; the bottom 20 rows are its inhibitory synapses.

Columns correspond to different time points relative to t0 (rightmost time point). The prediction probability for having a spike at t0 increases if the number of active

excitatory synapses increases just before t0 (red) and the number of active inhibitory synapses decreases (blue).

(E) Temporal cross-section of the learned weights in (D).

(F) Left: receiver operator characteristic (ROC) curve of spike prediction. The area under the curve (AUC) is 0.997, indicating high prediction accuracy at 1 ms

precision. Inset: zoom in on up to 1% false alarm rate. The red circle denotes the threshold selected for the DNN model shown in (C). Right: cross-correlation

between the I&F spike train (ground truth) and the predicted spike train of the respective DNN, when the prediction threshold was set to 0.2% false-positive (FP)

rate (red circle in left plot).

(G) Scatterplot of the predicted DNN subthreshold voltage versus ground-truth voltage produced by the I&F model.
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predicted spike train and the target I&F simulated spike train (the

‘‘ground truth’’). The cross-correlation shows a sharp peak at

0 ms and has a short (�10 ms) half-width, suggesting high tem-

poral accuracy of the DNN. We also quantified the DNN perfor-

mance in predicting the subthreshold membrane potential by
using standard regression metrics, and, in Figure 1G, depict

the scatterplot of the predicted voltage versus the ground-truth

simulated output voltage. The root mean square error (RMSE)

is 1.73 mV (79.8% variance explained), indicating a good fit be-

tween the I&F and the respective DNN. Note that high accuracy
Neuron 109, 1–13, September 1, 2021 3
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on both binary spike prediction and continuous somatic voltage

is a dual prediction attempt achieved with only a single hidden

unit that is enforcing a strict bottleneck. This is possible only

due to the strong relationship between outputs spikes and so-

matic voltages in the I&F model case.

In conclusion, as a proof of concept, we have demonstrated

that a very simple DNN can learn the I/O transformation of an

I&F model with a high degree of temporal accuracy. Importantly,

the resulting weight matrix (the filter) obtained by the learning

process is interpretable, as it represents known features of the

I&F model, including the existence of two classes of inputs

(excitatory and inhibitory), the convolution of the synaptic inputs

with the exponential decay representing the passive membrane

properties (resistance, capacitance), and the transformation

from subthreshold membrane potential to spike output.

Analogous DNN for the full complexity of the L5 cortical
pyramidal neuron model
We next applied our paradigm to a morphologically and electri-

cally complex detailed biophysical compartmental model of a

3D-reconstructed L5 cortical pyramidal cell (L5PC) from rat so-

matosensory cortex (Figure 2A). The model is equipped with

complex nonlinearmembrane properties, a somatic spike gener-

ation mechanism, and an excitable apical nexus capable of

generating calcium spikes (Hay et al., 2011; Larkum et al.,

1999; Schiller et al., 1997). The excitatory synaptic inputs are

mediated through both voltage-independent AMPA-based

conductance and voltage-dependent NMDA-type conductance

(Jahr and Stevens, 1993); the inhibitory inputs are mediated

through conductance-based GABAA-type synapses. Both excit-

atory and inhibitory synapses are uniformly distributed across

the dendritic tree of the model neuron (see STAR Methods and

Figures S1 and S4 for more details). The training data consisted

of a combined total of more than �200 h of simulated time, with

excitatory and inhibitory inputs randomly activated in time ac-

cording to a Poisson distribution with a firing rate consisting of

a piecewise constant temporal trajectory.

A thorough search of configurations of deep and wide fully

connected neural network (FCN) architectures have failed to pro-

vide a good fit to the I/O characteristics of the L5PC model.

These failures suggest a substantial increase in the complexity

of I/O transformation compared to that of I&F model. Indeed,

only a TCN architecture with seven layers (depth), 128 channels

per layer (width), and T = 153 ms (history), provided a high preci-

sion fit (Figures 2B, 2C, and S2). The example in Figure 2C shows

that this TCN can predict the somatic subthreshold voltage and

spikes of a highly complex neuron with high precision when pro-

vided with a previously unseen input pattern from the test set.

Although this was the first configuration of a network that met

our criterion for a fit, we consequently managed to find other

DNNs that provided comparable results. An extended analysis

of the DNN depth, width, and time-window history required to

replicate the I/O of this L5PCmodel faithfully is presented below.

It is important to note that the model’s accuracy was relatively

insensitive to the temporal kernel sizes of the different DNN

layers when keeping the total temporal extent of the entire

network fixed. Therefore, the first layer’s temporal extent was

selected to be larger than the subsequent layers, mainly for visu-
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alization purposes (see Figure 2G–2I). Figure 2H shows a filter

from a unit in the first layer of the DNN. This filter is somewhat

similar to the filter in Figure 1D but integrates only basal and ob-

lique subtrees and ignores the apical tree’s inputs. Moreover, the

filters have different shapes, representing the differential contri-

bution of inputs arriving at different distances from the soma as

predicted by cable theory for dendrites (Rall 1967). Figure 2I,

however, shows a filter of another unit that, in contrast to the filter

in Figure 2H, has negligible weights assigned for basal and obli-

que dendrites but a very strong apical tuft dependency. By

examining additional first layer filters (not shown), we found a

wide variety of different activation patterns that the TCN utilized

as an intermediate representation, including many temporally di-

rectionally selective filters (similar to those shown in Figure 5D

below). Figures 2D–2F show the quantitative performance eval-

uation of this DNNmodel. For binary spike prediction (Figure 2D),

the AUC is 0.9911. For somatic voltage prediction (Figure 2E),

the RMSE is 0.71 mV, and 94.6% of the variance is explained

by this model. Note that despite its seemingly large size, the re-

sulting TCN represents a substantial decrease in computational

resources relative to a full simulation of a detailed biophysical

model (involving numerical integration of thousands of nonlinear

differential equations), as indicated by a speedup of simulation

time by several orders of magnitude.

NMDA synapses are major contributors to the I/O
complexity (‘‘depth’’) of L5PCs
Now that we have obtained a DNNmodel that can replicate the I/

O relationship of a detailed biophysical/compartmental model of

a real neuron very accurately, can we learn from it what the

essential features that contribute to neuron complexity are?

Detailed studies of synaptic integration in dendrites of cortical

pyramidal neurons suggested the primary role of the voltage-

dependent current through synaptic NMDA receptors, including

at the subthreshold and suprathreshold (NMDA spike) regimes

(Polsky, Mel, and Schiller 2004; Branco, Clark, and H€ausser

2010). As NMDA receptors (NMDARs) depend nonlinearly on

the voltage, they are highly sensitive not only to the activity of

the synapse in which they are located but also to the activity of

(and the voltage generated by) neighboring synapses and their

dendritic location. Moreover, the NMDA current has slow dy-

namics, promoting integration over a time window of tens of mil-

liseconds (Doron et al., 2017; Jahr and Stevens, 1993; Major

et al., 2013). Consequently, we hypothesized that removing

NMDA-dependent synaptic currents from our L5PC model will

significantly decrease the size of the respective DNN to achieve

similar levels of accuracy, implying a reduction in the complexity

of the I/O transformation.

In Figure 3, we present the results of a new set of simulations

where the NMDA voltage-dependent conductances were

removed, such that the excitatory input relies only on AMPA-

mediated conductances. We compensated for the significant

reduction of excitatory current resulting from the NMDA removal

by adjusting the input firing rate of the AMPA-type synapses to

maintain the same average output firing rate of the L5PC neuron

model as in Figure 2 (see precise details in Figure S4). The figure

shows that for this model, we have managed to achieve a similar

quality fit as in Figure 2 with a much smaller (and shallower)



Figure 2. A detailed model of an L5 cortical pyramidal neuron with AMPA and NMDA synapses is faithfully captured by a TCN with seven

hidden layers consisting of 128 feature maps per layer and a history of 153 ms

For a Figure360 author presentation of this figure, see https://doi.org/10.1016/j.neuron.2021.07.002.

(A) The modeled L5PC. Basal, oblique, and apical dendrites are marked in purple, orange, and green, respectively.

(B) Analogous DNN with seven hidden layers. Orange, blue, and magenta circles represent the input layer, the hidden layer, and the DNN output, respectively.

Green units represent linear activation units (see STAR Methods).

(C) Top: example voltage response of the L5PC model with AMPA and NMDA synapses (cyan) and the analogous DNN (magenta) to random synaptic input.

Bottom: zoom in on the dashed-rectangle region in the top trace.

(D) ROC curve of spike prediction; the AUC is 0.9911, indicating high prediction accuracy at 1ms precision. A zoom in on up to 4% false alarm rates is shown in the

inset. The red circle denotes the threshold selected for the DNN model shown in (B).

(E) Scatterplot of the predicted DNN subthreshold voltage versus ground-truth voltage.

(F) Cross-correlation plot between the ground truth (L5PC model with AMPA and NMDA synapses) spike train, and the predicted spike train of the respective

DNN, when the prediction threshold was set according to the red circle in (D).

(G) Learned weights of a selected unit in the first layer of the DNN. The top left, center, and right panels show inputs located on the basal dendrites, oblique

dendrites, and the apical tuft, respectively. For each case, excitatory synapses are shown in the top half of the rows, whereas inhibitory synapses are shown in the

bottom half. Different columns correspond to different time points relative to t0 (rightmost time point). Bottom: temporal cross section of the learned

weights above.

(H) Similar to (G), first layer weights for a different unit in the first layer but with a different spatiotemporal pattern.

(I) An additional unit that is weakly selective to whatever happens in the basal dendrites, weakly sensitive to oblique dendrites, but very sensitive to apical tuft

dendrites. The output of this hidden unit is increased when there are apical excitation and a lack of apical inhibition in a time window of 40 ms before t0. Note the

asymmetry between the amplitudes of the temporal profiles of excitatory and inhibitory synapses, indicating that inhibition decreases the activity of this unit more

than excitation increases it.

See also Figure S1 for more details about simulation.
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Figure 3. A detailed model of an L5PC neuron with AMPA synapses is faithfully captured by a DNN with one hidden layer consisting of 128

hidden units

(A) Illustration of the L5PC model. Excitation in this model is mediated only by AMPA conductances.

(B) Analogous DNN. As in Figure 2, orange, blue, and magenta circles represent the input layer, the hidden layer, and the DNN output, respectively. Green units

represent linear activation units.

(C) Top: response of the L5PC model (cyan) and the analogous DNN (magenta) to random AMPA-based excitatory and GABAA-based inhibitory synaptic input

(see STAR Methods). Bottom: zoom in on the dashed-rectangle region in the top trace. Note the great similarity between the two traces.

(D) ROC curve of spike prediction; the AUC is 0.9913, indicating high prediction accuracy at 1 ms precision. Inset: zoom in on up to 4% false alarm rates. The red

circle denotes the threshold selected for the DNN model shown in (B).

(E) Cross-correlation plot between the ground truth (L5PCmodel response) and the predicted spike train of the respective DNN for prediction threshold indicated

by the red circle in the left plot.

(F) Scatterplot of the predicted DNN subthreshold voltage versus ground-truth voltage.

(G) Learned weights of selected units in the DNN, separated by their morphological (basal, oblique, and apical) location. Like in Figure 2, in each case, excitatory

synapses are shown in the top half of the rows, and the bottom half shows inhibitory synapses. As in Figure 1D, different columns correspond to different time

points relative to t0 (rightmost time point). Note that just before t0, the output of this hidden unit increases if the number of active excitatory synapses increases at

the basal and oblique dendrites (red), whereas the number of active inhibitory synapses decreases (blue) at these locations. However, this unit is nonselective to

activity at the apical tuft, indicating the lack of influence of the tuft synapses on the neuron’s output by this unit.

See also Figures S3 and S4 for more details about simulation and fitting results with a larger TCN.
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network. The network consists of a fully connected DNN (FCN)

with 128 hidden units and only a single hidden layer (Figure 3B)

and T = 43 ms (history). This significant reduction in complexity

is due to the ablation of NMDA channels. Also, in our DNN

training attempts, we have failed to achieve a good fit when using

the smaller architecture that was successful for the I&F model

neuron shown in Figure 1. This indicates that whereas the DNN

model for L5PC is greatly simplified in the absence of NMDA

conductance, additional neuronal mechanisms still contribute

to the richness of its I/O transformation of the L5PC as compared

to that of the I&F neuron model.

Figure 3C shows an exemplar test trace for the DNN illustrated

in Figure 3B, whereas Figure 3H depicts a representative exem-

plar of the weight matrix for one of the hidden units of the DNN.

By examining the filters of the hidden layer of the DNN, we

observed that the weights representing inputs to the oblique

and basal dendrites had profiles that resemble postsynaptic po-

tentials (PSPs; mirrored in time). Interestingly, the weights asso-

ciated with synapses of the apical tuft are essentially zero. This

pattern remains consistent for all first layer filters of the network,

implying that, for this model, the apical dendritic synapses had
6 Neuron 109, 1–13, September 1, 2021
negligible information regarding predictions of the output spikes

of the neuron, even in the presence of calcium spikes occasion-

ally occurring in the nexus. Contrasting this filter with the one

presented in Figure 2I suggests that the NMDA nonlinearity

greatly assists in the activation of apical tuft dendrites. Figures

3D–3F show the quantitative performance evaluation. For binary

spike prediction (Figure 3E), the AUC is 0.9913. For somatic

voltage prediction (Figure 3F), the RMSE is 0.58 mV, and

95.0% of the variance is explained by this model.

In order to systematically compare the complexity of DNNs for

the AMPA-only case (Figure 3) versus the AMPA andNMDA case

(Figure 2),we selected aminimal approximation threshold (AUC=

0.9910) as a ‘‘good enough’’ performance threshold for spiking

accuracyof theDNNascompared to the spikingof the respective

biophysical model. DNNs that performed better than this

threshold were considered to be ‘‘a good approximation.’’ We

then asked what is the minimal sized network that satisfies this

threshold for AMPA-only case versus the AMPA and NMDA

case. Toward this end, we trained a total of 137 DNNs (62 for

AMPA only and 75 for AMPA and NMDA) while varying three

main hyperparameters: depth, width [number of channels per



Figure 4. The minimal DNN size required to achieve a good fit is larger for AMPA and NMDA synapses compared to AMPA-only synapses

across all tested hyperparameters

(A) Deep networks of various depths, widths, andmaximal temporal history dependencies were fitted on two L5PCmodels, one with AMPA and NMDA synapses

and the other with only AMPA synapses. The table summarizes the results by showing theminimal depth, width, and temporal dependence extent DNNs for each

of the two biophysical model variations that successfully passed aminimal ‘‘good approximation’’ threshold of AUC = 0.9910. A noticeably clear trend arises that,

with NMDA-based synapses, DNNs of depth 5–8 are required to achieve this threshold criterion, whereas shallower DNNs are required for the case of AMPA-only

synapses.

(B) 2D scatterplot jointly depicting depth and width of DNNs that meet minimal performance criteria as in (A) for the two cases among all attempted networks for

AMPA-only synapses (orange) and AMPA and NMDA synapses (dark red). A small Gaussian noise was added to depth and width axes for visualization purposes

to avoid overlap of the respective points. Arrows indicate the networks utilized in Figures 2 and 3.

See also Figure S2 for more details.
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layer], and temporal extent of the input history used to make the

prediction. Figure 4A depicts a table that summarizes the results.

It is clear that in order to reach similar levels of accuracy, much

smaller DNNs are required for the AMPA case for all three hyper-

parameters considered. Figure 4B depicts a 2D scatterplot of

both depth and width of DNNs that meet the minimum perfor-

mance threshold among all attempted hyperparameter configu-

rations. It is evident that only networks with large depths and

widths can achieve this minimal level of accuracy for the AMPA

and NMDA case (dark red dots), whereas much smaller (shal-

lower) networks are sufficient for the AMPA-only case (orange

dots). Note that although the precise details of the results will

vary when selecting a different AUC threshold value, the overall

trend stays the same. For an extended comparison, see

Figure S2.

To investigate further the relationship between NMDARs and

their interaction with dendritic morphology, as well as the influ-

ence of NMDAR density on I/O transformation complexity, we

conducted a set of additional analyses. As shown in Figures

S5A–S5C, we examined the I/O complexity when the AMPA

and NMDA synapses were placed only on part of the L5PC

morphology. We examined four such cases whereby the syn-

apses impinge on different regions of the dendritic tree; these

cases are strictly encompassed within each other so that we

have a clear axis of complexity (full morphology, excluding

tuft synapses, synapses on the basal tree only, and synapses
placed only proximal compartments of the basal tree). Fig-

ure S5G shows a summary of these results, clearly indicating

a reduction in I/O complexity as morphology containing synap-

ses is progressively more restricted. In Figures S5D–S5F, we

examine the interaction between the case where NMDA synap-

ses are placed on proximal and distal parts of the basal tree as

compared to the respective AMPA-only case. Figure S5H

shows a summary of these results, which indicate that there ex-

ists an additive interaction between synapse type and

morphology, specifically that segregated dendritic compart-

ments with synapses are harder to model also in the AMPA-

only case; the nonlinearities of NMDAR synapses in this case

add an additional complexity to the modeling effort. In Fig-

ure S6, we examine the dependence of the I/O relationship on

the maximal NMDA conductance. It is evident (Figure S6D)

that even a small increase in NMDA conductance has a signif-

icant impact on I/O complexity and that the I/O complexity in-

creases as the NMDAR density increases further, albeit with

‘‘diminishing returns.’’

DNN analysis of a single dendritic branch provides new
insights for the contribution of NMDA conductance to
the computational complexity of neurons
Todeepen theunderstandingof thecontribution ofNMDAsynap-

ses to the computational complexity of neurons, we next studied

a simplified case. Here, the NMDA synapses were activated
Neuron 109, 1–13, September 1, 2021 7



Figure 5. Analysis of a DNN that successfully replicates the I/O of a single L23PC dendritic branch receiving NMDA synapses reveals spatio-

temporal pattern matching with four distinct convolutional filters

(A) Left: a layer 2/3 pyramidal neuron was used in the simulations with a zoom in on one selected basal branch (dashed rectangle). This modeled dendritic branch

receiving nine excitatory synapses, depicted schematically by the ‘‘ball and stick’’ model at the bottom, was also used in a previous study (Branco et al., 2010).

Right: illustration of the analogous DNN that was trained on random synaptic inputs impinging on this basal dendrite. Colors as in Figure 2A.

(B) Example of the somatic voltage response (cyan) and DNN predicted output (magenta) to a random input spike pattern impinging on the basal dendritic branch

(red dots above).

(C) Example of somatic response to two spatiotemporal sequences of synaptic activation patterns (red, distal-to-proximal direction; blue, proximal-to-distal

direction) and the DNN predicted output for these same sequences (orange and light blue traces, respectively).

(D) Learned weights of the four hidden units consisting the respective DNNmodel. Heatmaps are spatiotemporal filters, as shown in Figures 1D and 2C. Note the

direction-selective shapes and long temporal extent of influence by distal synaptic activations.

(E) Scatterplot that shows the discrimination ability between different temporal orders of synaptic activations on themodeled basal branch. The vertical axis is the

ground-truth maximum voltage at the soma during a specific synaptic order of activation. The horizontal axis is the directionality index proposed in Branco et al.

(2010). The correlation coefficient is 0.86.

(F) Same as (E), but showing the DNN estimation of the maximum voltage of the respective order of activation. The correlation coefficient is 0.99.

See also Figure S7.
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along a single basal branch of a layer 2/3 pyramidal cell (L23PC)

from the mouse visual cortex, as in the experimental and

modeling study of Branco et al. (2010). This modeled dendrite

received a random activation of nine excitatory synapses uni-

formly distributed across the dendritic length. The temporal acti-

vation of each synapse followed a Poisson distribution, and the

instantaneousfiring ratewas identical for all synapses (Figure5A).

We found that theoutput of this single dendritic branch is faithfully

captured by a single layer of a fully connected DNNwith four hid-

den units (Figures 5A and5B). Examining the four filters of the first

layer reveals interesting shapes that make intuitive sense, as first
8 Neuron 109, 1–13, September 1, 2021
explored by the pioneering theoretical studies of Rall (1964). The

topmost filter in Figure 5D appears to be summing only very

recent and proximal dendritic activation. The second-from-top

hidden unit sums up recent distal dendritic synaptic inputs. The

third filter clearly shows a direction-selective hidden unit, prefer-

ring patterns in which synaptic activation is temporally activated

sequentially from distal to proximal, whereas the last hidden unit

responds to a prolonged distal dendrite summation of activity

combined with precisely timed proximal input activation. Thus,

the rich and complex integration of inputs on this dendritic

branch, which involved the contribution of the nonlinear NMDA
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current, can be conceptualized as pattern matching of a set of

four specific spatiotemporal templates.

To further examine the generalization capability of the DNNs,

Figure 5C examines the special cases studied by Branco et al.

(2010) of a sequential temporal activation of the nine synapses

once in the distal-to-proximal direction and, conversely, in the

proximal-to-distal direction. Importantly, our DNN network was

trained on random synaptic activation patterns and was not

exposed to these highly organized spatiotemporal input patterns

during training. However, the DNN successfully replicated the

response of the L23PCmodeled branch to these spatiotemporal

sequences. Figure 5E shows our reconstruction of the results of

Branco et al. (2010), whereby a directionality index was sug-

gested as a predictor for the peak somatic voltage for a random

activation sequence of the nine input synapses. Figure 5F shows

the much-improved prediction of the respective DNN for the

same activation sequences as in Figure 5E. It is important to

note that the special case of nine synaptic activations equally

spaced in time is highly unlikely to occur during the random input

stimulation regime that was used to train the DNN. Nevertheless,

as shown in Figure 5, the network can generalize even to this new

input regime with high precision.

These results illuminate the interpretability power of our

approach. By examining the four kernels (filters), we provide an

intuitive (Figure 5D), yet powerful (Figure 5F), interpretation for

the complex process of nonlinear spatiotemporal synaptic inte-

gration in a single dendrite with NMDA synapses. It also further

demonstrates the ability of our DNNmodels to generalize to pre-

viously unseen input patterns (out-of-distribution generalization),

as will be discussed below.

Generalization of single-neuron analogous DNNs to
spatiotemporal structured inputs
The analogous DNN for the L5PCwith NMDA synapses shown in

Figure 2 was trained on a large set of synaptic inputs that were

uniformly distributed across the dendritic trees and randomly

activated in time (see STAR Methods). However, how well

does this DNN capture the case of spatially clustered and

temporally synchronized inputs that may give rise to highly

nonlinear dendritic phenomena (e.g., NMDA spike)? Figure 6

shows that this DNN generalizes very well to a wide range of

spatiotemporally structured stimulation protocols without re-

training. Figure 6A depicts the case whereby excitatory and

inhibitory synapses impinge on restricted subtrees of the

modeled cell (purple dendritic regions); in this case, the temporal

patterns of the instantaneous input rates are similar to those dur-

ing the training of the DNN shown in Figure 2, and only the spatial

pattern is altered. The voltage response traces of the L5PC

model (in cyan) and the analogous DNN (magenta) are shown

at right. Comparisons of the output of the L5PC model and

that of the respective DNN for additional spatiotemporal struc-

tured synaptic input cases are depicted in Figures 6B–6D,

including situations with synchronous temporal input patterns

(Figures 6C and 6D) and without inhibition (Figures 6B and 6D).

In all cases, a close similarity between the subthreshold voltage

responses and spiking activity was found (see Figures S8B and

S8C for aggregate details for all the above-mentioned conditions

and combined simulation test time of �230 min). We conclude
that, albeit trained on a set of input synapses that were activated

randomly in time and uniformly distributed over the L5PC model

dendrites, this training input set was sufficiently rich so that the

respective DNN for this modeled cell successfully captures (gen-

eralizes well) the I/O of the L5PC model for a wide range of

spatially and temporally structured inputs. We note that the abil-

ity to generalize to different input statistics, as depicted in Fig-

ure 6, is greatly dependent on the DNN size. Indeed, we have

found that the deeper the analogous DNN is, the better it gener-

alizes (see Figures S8E and S8F and Table S1 for a full compar-

ative analysis).

DISCUSSION

Recent advances in the field of DNNs provide, for the first time, a

powerful general-purpose tool that can learn complex mappings

from examples. In this study, we used these tools to study the I/O

mappings of single complex nonlinear neurons at millisecond

temporal resolution. We constructed a large dataset of pairs of

(synaptic) input and (axonal) output examples by simulating a

neuron model of L5PC receiving a rich repertoire of synaptic in-

puts over its dendritic surface and recorded its spike output at

millisecond temporal resolution, as well as its somatic sub-

threshold membrane potential. We then trained networks of

various configurations on these I/O pairs until we obtained an

analogous ‘‘deep’’ network with close performance to that of

the neuron’s detailed simulation. We applied this framework to

a series of neuron models with various levels of morpho-electri-

cal complexity and obtained new insights regarding the compu-

tational complexity of cortical neurons.

For simple I&F neuron models, our framework provides simple

analogous DNNswith one hidden layer consisting of a single hid-

den unit that captures the full I/O relationship of the model. The

respective DNN filters provided key biophysical insights that are

consistent with our understanding of the parameters shaping the

I/O relationship of I&F models (Figure 1). In the case where only a

single basal dendritic branch of a cortical neuron, consisting of

NMDA synapses, was modeled, a shallow (one hidden layer)

DNN with only a few units was required to capture a different

aspect of the spatiotemporal integration of synaptic inputs (Fig-

ure 5). Surprisingly, even amodel of L5 cortical pyramidal neuron

with the full complexity of its dendritic trees and a host of den-

dritic voltage-dependent currents and AMPA-based synapses

is well captured by a relatively simple network with a single hid-

den layer (Figure 3). However, in a full model of an L5 pyramidal

neuron consisting of NMDA-based synapses, the complexity of

the analogous DNN is significantly increased; we found a good fit

to the I/O of this modeled cell when using a TCN that has five to

eight hidden layers (Figures 2 and 4; see also Figures S2 and S3).

Furthermore, a seven-layer analogous DNN for a L5PC that was

trained on random inputs successfully generalizes to new out-of-

distribution set of clustered and synchronous inputs (Figure 6).

These results suggest that the single cortical neuron with its

nonlinear synaptic inputs is already, on its own, a sophisticated

computational unit. Consequently, cortical networks built from

such units are deeper and computationally more powerful than

they seem to be just based on their anatomical (pre- to post-syn-

aptic) connections. Importantly, the implementation of the I/O
Neuron 109, 1–13, September 1, 2021 9



Figure 6. The seven-layer analogous DNN for L5PC that was trained on random inputs successfully generalizes to new out-of-distribution

clustered and synchronous inputs

(A) Left: modeled L5PC with AMPA and NMDA synapses as in Figure 2 with excitatory (red) and inhibitory (blue) synapses impinging only on a specific subtree

(purple dendritic regions). Instantaneous input rates for the excitatory (E) & inhibitory (I) synapses are similar to that during the training of the analogous DNN. Top

right: voltage response traces of themodeled cell (cyan) and the analogous DNN (magenta). Bottom right: zoom in on the dashed-rectangle region in the top trace.

(B) As in (A), but this time with excitatory-only synapses impinging on subparts of the dendritic tree (red regions). The temporal profile of instantaneous input rates

is like that given during training.

(C) As in (A), but with E&I synapses impinging on different subtrees (purple regions) of the modeled L5PC. Instantaneous rates of excitatory and inhibitory

synapses are driven by a synchronous sinusoidal pattern that was not seen during training.

(D) As in (A), but here, only excitatory synapses are impinging on the dendritic tree (red regions) and are activated with synchronous sinusoidal instantaneous

input rates.

See also Figure S8.
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function of single neurons using a DNN also provides practical

advantages. It is computationally much more efficient than the

traditional compartmental model, which required the solution

of many thousands of partial differential equations (PDEs)

per neuron. Indeed, for the full model of L5PCs, we obtained

a speedup of �2,0003 when using the DNN instead of

its compartmental-model counterpart. However, we did not

perform a comprehensive empirical or theoretical comparison

of the computational advantage of our DNN method for different

neuron models, different input conditions, or different hardware

or software versions, as this lies beyond the scope of the present

study. In general, the computational speedup of our approach

results from (1) compression/simplification (via the computa-

tional nodes and layers of the DNN) of all dendritic computations

performed in the cell, keeping only the computations that are

relevant for output spike generation; and (2) utilization of special-

ized graphics processing unit (GPU) hardware and a corre-

sponding software ecosystem, which are continuously devel-

oped for the increasingly growing needs of the deep-learning

community. Together, our tool can potentially be useful for simu-

lating large-scale realistic neuronal networks (Egger et al., 2014;

Markram et al., 2015). Furthermore, the size of the respective

DNN for a given neuron could be used (under certain assump-

tions [see below]) as an index for its computational power; the
10 Neuron 109, 1–13, September 1, 2021
larger it is, the more sophisticated computations this neuron

could perform. Such an index will enable a systematic compar-

ison between different neuron types (e.g., CA1 pyramidal cell,

cortical pyramidal cell, and Purkinje cell) or the same type of

cell in different species (e.g., mouse versus human cortical pyra-

midal cells).

It is important to emphasize that for optimization reasons, the

complexity of the analogous DNN described above is an upper

bound of the true computational complexity of the I/O of the

respective single neuron, i.e., it is possible that there exists a

smaller DNN that mimics the biophysical neuron with a similar

degree of accuracy but the training process we used did not

find it. Additionally, we note that we have limited our architecture

search space only to FCN and TCNneural network architectures.

It is likely that additional architectural search could yield simpler

and more compact models for any desired degree of prediction

accuracy. Nevertheless, we stress that this upper bound is in fact

several orders of magnitude computationally less intensive when

compared to the detailed biophysical simulations. In addition,

the results presented in Figure 1 clearly indicate that our pro-

posed method would have been able to uncover simple I/O rela-

tionships if the I/O transformation of cortical neurons was in fact

rather simple. This suggests that the DNN size that we have

foundmight be a relatively tight upper bound. In order to facilitate
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this search in the scientific community, we have released our

large readymade dataset of simulated inputs and outputs of a

fully complex single L5 cortical neuron in an in-vivo-like regime

so that the community can focus on modeling various aspects

of this endeavor and avoid re-running the simulations

themselves.

The analysis ofDNNs is a challenging task anda rapidly growing

field (MahendranandVedaldi, 2015;Mordvintsev et al., 2015;Olah

et al., 2017). Nevertheless, observing theweightmatrix of units (fil-

ters) in the first layer of the respective DNN is straightforward and

can provide ample insights regarding the I/O transformation of the

neuron. The full networkcanbe interpretedasconsistingofabasic

set of filters that span the space of possible spatiotemporal pat-

terns of synaptic inputs that will drive the original neuron to spike.

The first layer defines this space, and the rest of the networkmixes

andmatcheswithin that space. For example, as shown inFigure 3,

in the case of a pyramidal neuron without NMDA synapses, most

filters have significant weights only for basal and apical oblique in-

puts, and the weight given for apical tuft synapses is negligible

(despite the existence of voltage-dependent Ca2+ and other

nonlinear currents in this model, which results in occasional

Ca2+ spikes in the distal dendritic tuft). The picture is fundamen-

tally different when NMDA synapses were included in the model.

In this case, the weights assigned to apical dendrite synapses

are significant (Figure 2; see also Figure S6). Moreover, the filters

devoted to these apical inputs tend to have a temporal structure

that is significantly broader (in time) than for that of the proximal

synapses, suggesting that the temporal precision of input to the

apical synapses is less important for spike generation in the

soma. These are basic insights that could be drawn by observing

first layer filters of the resulting analogous DNN.

This work opens multiple additional avenues for future

research. One important direction is isolating the contribution

of specific mechanisms to the computational power of the

neuron in a similar way to that performed here for the NMDA-

based receptors (see also Figure S2). Fitting a DNNwhile manip-

ulating specific voltage-dependent dendritic currents (e.g.,

voltage-gated calcium channels [VGCCs], voltage-gated potas-

sium [Kv] channels or hyperpolarization-activated cyclic nucleo-

tide–gated [HCN] channels), will provide a deeper understanding

of their contribution to the overall synaptic integration process

and to the complexity of the respective DNN. An additional inter-

esting direction is to utilize this work to explore how real neurons

can use their rich biophysical repertoire in order to perform spe-

cific computations from the class computed by the equivalent

DNNs. By taking advantage of gradient-descent optimization

and specialized GPU hardware acceleration, one can efficiently

train the DNN representing the neuron to compute an interesting,

meaningful function (e.g., training it to classify images of hand-

written digits or to classify sequences of auditory sounds).

Then it might be possible to map this DNN back to the original

biophysical neuron model. One can then both directly validate

the hypothesis that single neurons could perform complex and

useful computational tasks and investigate how these neurons

and specific spatiotemporal distribution of synapses can actu-

ally implement such tasks.

If indeed one cortical neuron is equivalent to a multilayered

DNN, then what are the implications for the cortical microcircuit?
Is that circuit merely a deeper classical DNN composed of simple

‘‘point neurons’’? A key difference between the classical DNN and

a cortical circuit composed of deep neurons is that, in the latter

case, synaptic plasticity can take place mainly in the synaptic

(input) layer of the analogous DNN for a single cortical neuron,

whereas the weights of its hidden layers are fixed (and dedicated

to represent the I/O function of that single cortical neuron). It is

important to note, however, that there are other formsof (non-syn-

aptic) plasticity in neurons, such as branch-specific plasticity or

intrinsic plasticity (Losonczy et al., 2008) that can, perhaps, shape

theweightsofdeep layersof theanalogousDNN inaddition tosyn-

aptic efficacies. Taken together with the myriad of recurrent con-

nections and networkmotifs between cortical neurons of different

types (Markram et al., 2015), we hereby propose a concrete, bio-

logically inspired network architecture for cortical networks that

seamlessly incorporates single-neuron complexity. Focusing on

architecture as a key element of researchwas recently advocated

by (Richards et al., 2019). Indeed, the search for the appropriate

architecture of artificial neural networks is one of the most

rewarding avenues of machine learning today (He et al., 2015;

Lin et al., 2014; Vaswani et al., 2017), and studying the specific ar-

chitecture suggested in thepresent studymayunravel someof the

inductivebiashiddenwithin the corticalmicrocircuit andharness it

for future artificial intelligence (AI) applications.
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kaggle/ds/417817) at the following link:

https://www.kaggle.com/selfishgene/single-neurons-as-deep-nets-nmda-test-data

Additionally, the dataset was deposited to Mendeley Data (https://doi.org/10.17632/xjvsp3dhzf.2) at the link:

https://data.mendeley.com/datasets/xjvsp3dhzf/2

A github repository of all simulation, fitting and evaluation code can be found in the following link:

https://github.com/SelfishGene/neuron_as_deep_net.

Additionally, we provide a python script that loads a pretrained artificial network and makes a prediction on the entire NMDA test

set that replicates the main result of the paper (Figure 2):

https://www.kaggle.com/selfishgene/single-neuron-as-deep-net-replicating-key-result.

Also, a python script that loads the data and explores the dataset (Figure S1) can be found in the following link: https://www.kaggle.

com/selfishgene/exploring-a-single-cortical-neuron.

METHOD DETAILS

I&F simulation
For Figure 1 simulations, membrane voltage was modeled using a leaky I&F simulation VðtÞ = PNsyn

i = 1

wi

P
ti

Kðt � tiÞ, where wi denotes

synaptic efficacy for each synapse, ti denotes presynaptic spike times, andKðt�tiÞ denotes the temporal kernel of each postsynaptic

potential (PSP). We used a temporal kernel with exponential decay Kðt�tiÞ= e�
t�ti
t $uðt�tiÞwhere uðtÞ is the Heaviside function uðtÞ=(

0; jt < 0
1; jtR0

and t = 20ms is the membrane time constant. When the threshold was reached, an output spike was recorded, and the

voltage was reset to Vrest = � 77mV. As input to the simulated I&F neuron, Nexc = 80 excitatory synapses and Ninh = 20 inhibitory

synapses were used. Synaptic efficacies ofwexc = 2mV were used for excitatory synapses and winh = � 2mV for inhibitory synapses.

Each presynaptic spike train was taken from a Poisson process with a constant instantaneous firing rate. Values used fexc = 1:4Hz for

excitatory synapses and finh = 1:3Hz for inhibitory synapses. The resulting output average firing rate for these simulation values was

0.9 Hz.
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L5PC simulations
For Figure 2 and Figure 3 simulations, we used a detailed compartmental biophysical model of cortical L5PC as is, modeled by Hay

et al., 2011. For a full description of the model please see STAR Methods in the original paper. Briefly, this model contains in total 12

ion channels for each dendritic compartment. Some of the channels are unevenly distributed over the dendritic arbor. In Figure 3

double exponential conductances based AMPA synapses were used in simulations with trise = 0:3ms, tdecay = 3ms and gmax =

0:4nS. For Figure 2 and Figure 4, in related simulations we used the standard NMDA model (Jahr and Stevens, 1993), with trise =

2ms, tdecay = 70ms, g= 0:08 mV�1 and gmax = 0:4nS. For both Figure 2 and Figure 3, we also used double exponential GABAA syn-

apseswith trise = 2ms, tdecay = 8ms and gmax = 1nS on each independent dendritic segment, we placed a single AMPA (for Figure 3) or

AMPA + NMDA (for Figure 2) synapse as well as a single GABAA synapse. In order to mimic uniform coverage of excitatory and inhib-

itory synapses on the entire dendritic tree, we stimulated each compartment with a firing rate proportional to the segment’s length.

Each presynaptic spike train was taken from a Poisson process with a smoothed piecewise constant instantaneous firing rate. The

Gaussian smoothing sigma, as well as the timewindow of constant rate before smoothingwere independently resampled for each 6 s

simulation from the range 10ms to 1000 ms (Figure S1D). This was chosen, as opposed to a constant firing rate, to create additional

temporal variety in the data in order to increase the applicability of the results to all possible situations. For Figure 2 simulations with

NMDA synapses, the total amount of excitatory and inhibitory presynaptic spikes per 100 ms range between 0 and 800 spikes (Fig-

ure S1). This is equivalent to 8000 excitatory synapses with an average rate of 1 Hz and 2000 inhibitory synapses with an average rate

of 4 Hz. The average output firing rate of the simulated cell across all simulations was 1.0 Hz. For Figure 3 simulations, with AMPA only

synapses, the total amount of excitatory and inhibitory presynaptic spikes per 100 ms range were increased in order to account for

the smaller amount of total current injected due to lack of NMDA current, with the purpose to achieve similar output firing rates of 1.0

Hz. See Figure S4 for detailed comparison.

L23PC simulations
For Figure 4 simulations, we used a detailed compartmental biophysical model of cortical L23PC as is, modeled by Branco et al.,

2010. In these experiments we stimulated a single branch with 9 dendritic segments with an NMDA synapse on each compartment,

with parameters as in the simulation for Figure 4. The branch was selected as in Branco et al., 2010 in order to perform a comparison

with the original paper. Similarly, to Figure 2 and Figure 3 simulations, each presynaptic spike train was taken from a Poisson process

with a smoothed piecewise constant instantaneous firing rate. The number of presynaptic input spikes to the branch per 100 ms

ranged between 0 and 15 in simulations used for training. In Figures 5C, 5E, and 5F, we repeated input stimulation protocol sug-

gested by Branco et. al, 2010, consisting of single presynaptic spike per synapse with constant time intervals of 5 ms between sub-

sequent synaptic activations, only randomly permuting the order of activation between trials.

DNN fitting
In order to represent the input in a suitable manner for fitting with a DNN, we discretize time using 1 ms time bin Dt. Using this dis-

cretization, we can represent a spike train as a sequence of binary values S½t�, such that S½t�˛f0;1g, since the length of a spike is

approximately 1 ms there cannot be more than a single spike in such a time interval. We denote the spike trains the neuron receives

as input as X½s;t�;s˛f1;2;.;Nsyng;t˛f1; 2;.;Tg, where s denotes the synapse index, and t denotes time. The spike trains a neuron

emits as output we denote as yspike½t�, The somatic voltage trance we denote as yvoltage½t�. For every point in time, we attempt to pre-

dict both somatic spiking yspike½t� and somatic voltage yvoltage½t� based only a Tinput sized window of presynaptic input spikes. i.e.,

define the vector xti
!= ½X½s; t��; s˛f1;2;.;Nsyng; t˛fti; ti �1; ti �2;.; ti �Tinputg and a neural network that maps xt

! to byspike½t� andbyvoltage½t�. i.e., byvoltage½t�; byspike½t� = DNNðxt!; qÞ. We treat spike prediction as a binary classification task and use standard log loss

and treat voltage prediction as regression task and use standard MSE loss. We wish to find a model’s parameters q such that we

minimize a combined loss LðqÞ = LLogLossðyspike; byspikeÞ+wvoltage$LMSEðyvoltage; byvoltageÞ, where wvoltage is the relative importance of

the spike prediction loss with respect to the somatic voltage prediction loss. For most of the experiments we set wvoltage to be about

half the size of the spike loss. The DNN architecture we used was a temporally convolutional network (TCN) (Bai et al., 2018) and we

applied it in a fully convolutional manner on all possible time points. Note that when the temporal filter size after the first layer is 1 in a

TCN applied as described, this is effectively a fully connected neural network. In most of our experiments we used fully connected

neural networks, except for Figure 2 in which we used a proper TCN with a hierarchical convolutional structure. After every convolu-

tional layer, a batch normalization layer immediately follows. We employed a learning schedule regime in which we lowered the

learning rate and increased batch size as we progressed through training. Full details of the learning schedule in each case are in

the attached code repository. For the generation of Figure S2 we trained many networks with different hyperparameters and trained

each network for 2-14 days on a GPU cluster consisting of several V100, K80 and 2080Ti Nvidia GPUs. All results of the different

hyperparameters and results can be found in the data link on the Kaggle platform. The total amount of single GPU years needed

to fit all DNNs throughout the entire study was �3.4 years.

Out-of-Distribution (OOD) simulations
To find spatial clusters in a data-dependent manner, we applied a K-means clustering algorithm on the cross-correlation matrix of all

dendritic voltages. We use k to be 64 different spatial clusters. During the simulations used to create the data for Figures 4 and S8, we

randomly selectedup to30%of all spatial clusters for eachsimulationandstimulatedonly theseclustersduring that simulation. In 50%
Neuron 109, 1–13.e1–e3, September 1, 2021 e2
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of the simulations, the temporal profile of instantaneous rates for all synapses was modulated by a sinusoidal function. The period of

this temporal modulation was randomly selected to be between 15 ms and 300 ms for the duration of the simulation. Additionally, in

50%of the simulationswecanceledall inhibition andkept only the excitation. The fullOOD test set consistedof 2688simulations, 6 sof

simulation time each. The full details of this process can be found in the code repository on github and results of our spatial clustering

can be found on the dataset on Kaggle. Together, these 3manipulations (spatial clustering, temporal synchronization, and excitation

only input) consist of large deviations from the statistics of the input during training and thus provide a robust OOD test.

QUANTIFICATION AND STATISTICAL ANALYSIS

Model evaluation
We divided our simulations to train, validation, and test datasets. We fitted all DNN models on the training dataset, and all reported

results are on an unseen test dataset. A validation dataset was used for modeling decisions, hyperparameter tuning and snapshot

selection during the training process (early stopping). We evaluated binary spike prediction results using the receiver operator char-

acteristic (ROC) curve and calculated the area under the curve (AUC). We note that due to the relatively low firing rate of the neuron,

the binary classification problem of the instantaneous spike prediction problem is highly unbalanced. For every second of simulation

there was on average 1 positive sample (spike) for every 999 negative samples (non-spikes). Therefore, we used a very conservative

threshold over the binary spike probability prediction output of the DNN in order to create the final spike train prediction and examine

the cross-correlation plot. Note also that a prediction without a single True Positive on the 1 ms time binning binary spike prediction

problem can still be in fact, a very good solution, e.g., if our model outputs, as its prediction, the exact same spike train as the original

but offset by 1 ms in time. In this case, there will be no True positives and many False positives, but the predicted spike train is quite

good nonetheless. To summarize: the temporal cross-correlation between the original and predicted spike trains is not directly

related to binary prediction metrics used and therefore we display it as it’s not redundant. For creating a binary prediction, we chose

a threshold over the continuous model prediction that corresponds to 0.2% false-positive rate on the validation set after training

(a different threshold was used for each model trained). In order to evaluate the temporal precision of the binary spike prediction

we plotted the normalized cross-correlation between the predicted output spike train and the ground truth simulated spike train

for a 50 ms temporal offset in either direction. To quantify the width of cross correlation plot, we fit a Gaussian to it and use the sigma

parameter (see Table S1). In order to evaluate the voltage prediction, we calculated the RMSE and plot the scatterplot between pre-

dicted voltage and the ground truth simulated voltage.

Comparison of AMPA versus NMDA model complexity
In order to systematically compare the complexity of DNNs for AMPA case (Figure 3) versus NMDA case (Figure 2), we select a min-

imal approximation threshold (AUC = 0.9910) for spiking accuracy of the DNN as compared to the spiking of the respective biophys-

ical model. We consider DNNs that perform better than this threshold to be a good approximation. We then ask what is the minimal

sized network that satisfies this threshold for AMPA versus NMDA cases. For this, we trained a total of 137 DNNs (62 for AMPA, 75 for

NMDA) while varying 3 main hyperparameters - depth, width (number of channels per layer), and temporal extent of the input history

required to make a prediction. For an extended comparison of these data please see Figures 4 and S2. For full fitting results with

many additional various metrics for all 137 DNN fits, see released accompanying data. Although the quantitative results are depen-

dent on the precise threshold used (AUC = 0.9910), they are mostly insensitive to small changes in this threshold.

Assessing the complexity resulting from the interaction between dendritic morphology and NMDA receptor density
To investigate further the relationship betweenNMDAR and its interaction withmorphology aswell as the influence of NMDA receptor

density on I/O transformation complexity, we conducted a set of additional analyses (Figures S5 and S6). When assessing the I/O

complexity of NMDA synapses when placed only on part of the morphology, we perform simulations similar to those described pre-

viously, with the only difference being the part of the dendritic tree receiving synaptic input. In order to conduct a proper comparison,

we tune the input firing rates such that the average output firing rate will be identical for all simulations (both test and train datasets). In

this case we train DNNs of {1,2,3,7} layers for a fixed width (128) and fixed history dependence (100ms). We limit training time to�24

hours since our goal is to perform a quantitative comparison and not achieve maximally performance models like for the case shown

in Figures 2 and 3. To establish a ‘‘morphological complexity’’ axis we select different regions of the dendritic tree of the modeled

L5PC that are strictly contained within each other. These regions are: full morphology, full morphology excluding tuft synapses,

the basal tree only, and only proximal compartments of the basal tree. Results depicted in Figures S5A–S5C, and summary results

in Figure S5G. summary results depict the spiking AUC accuracy measure for the case of DNNs with 3 layers for all 4 morphological

complexities. Higher I/O complexity is interpreted as corresponding to lower fit accuracy. Similarly, In Figures S5D–S5F and S5H we

examine the interaction between the existence of NMDARs on proximal and distal parts of the basal tree as compared to AMPA only

case. The only difference from what was described above for the morphological case is that now we fitted DNNs with a smaller fixed

width (32 filters/layer). In a similar way, In Figure S6 we examine the dependence of the I/O relationship on varying the NMDAR max

conductance level (which models receptor density). Here again we use 32 wide DNNs for this analysis.
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